A general framework for defining and optimizing robustness
- URL: http://arxiv.org/abs/2006.11122v2
- Date: Sat, 29 May 2021 08:46:35 GMT
- Title: A general framework for defining and optimizing robustness
- Authors: Alessandro Tibo, Manfred Jaeger, Kim G. Larsen
- Abstract summary: We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
- Score: 74.67016173858497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robustness of neural networks has recently attracted a great amount of
interest. The many investigations in this area lack a precise common foundation
of robustness concepts. Therefore, in this paper, we propose a rigorous and
flexible framework for defining different types of robustness properties for
classifiers. Our robustness concept is based on postulates that robustness of a
classifier should be considered as a property that is independent of accuracy,
and that it should be defined in purely mathematical terms without reliance on
algorithmic procedures for its measurement. We develop a very general
robustness framework that is applicable to any type of classification model,
and that encompasses relevant robustness concepts for investigations ranging
from safety against adversarial attacks to transferability of models to new
domains. For two prototypical, distinct robustness objectives we then propose
new learning approaches based on neural network co-training strategies for
obtaining image classifiers optimized for these respective objectives.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in
Deep Learning [73.5095051707364]
We consider classical distribution-agnostic framework and algorithms minimising empirical risks.
We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks is extremely challenging.
arXiv Detail & Related papers (2023-09-13T16:33:27Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - A Theoretical Perspective on Subnetwork Contributions to Adversarial
Robustness [2.064612766965483]
This paper investigates how the adversarial robustness of a subnetwork contributes to the robustness of the entire network.
Experiments show the ability of a robust subnetwork to promote full-network robustness, and investigate the layer-wise dependencies required for this full-network robustness to be achieved.
arXiv Detail & Related papers (2023-07-07T19:16:59Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
Two-player zero-sum paradigm of adversarial training has not engendered sufficient levels of robustness.
We show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on robustness.
A novel non-zero-sum bilevel formulation of adversarial training yields a framework that matches and in some cases outperforms state-of-the-art attacks.
arXiv Detail & Related papers (2023-06-19T16:00:48Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks.
In this work, we propose a generic method for introducingity in the network predictions.
We also utilize this for smoothing decision rejecting low confidence predictions.
arXiv Detail & Related papers (2023-06-10T15:11:24Z) - (De-)Randomized Smoothing for Decision Stump Ensembles [5.161531917413708]
Tree-based models are used in many high-stakes application domains such as finance and medicine.
We propose deterministic smoothing for decision stump ensembles.
We obtain deterministic robustness certificates, even jointly over numerical and categorical features.
arXiv Detail & Related papers (2022-05-27T11:23:50Z) - Confidence Estimation via Auxiliary Models [47.08749569008467]
We introduce a novel target criterion for model confidence, namely the true class probability ( TCP)
We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP)
arXiv Detail & Related papers (2020-12-11T17:21:12Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.