Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations
- URL: http://arxiv.org/abs/2407.07482v1
- Date: Wed, 10 Jul 2024 09:13:11 GMT
- Title: Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations
- Authors: Luca Marzari, Francesco Leofante, Ferdinando Cicalese, Alessandro Farinelli,
- Abstract summary: We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
- Score: 80.86128012438834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of assessing the robustness of counterfactual explanations for deep learning models. We focus on $\textit{plausible model shifts}$ altering model parameters and propose a novel framework to reason about the robustness property in this setting. To motivate our solution, we begin by showing for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete. As this (practically) rules out the existence of scalable algorithms for exactly computing robustness, we propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees while preserving scalability. Remarkably, and differently from existing solutions targeting plausible model shifts, our approach does not impose requirements on the network to be analyzed, thus enabling robustness analysis on a wider range of architectures. Experiments on four binary classification datasets indicate that our method improves the state of the art in generating robust explanations, outperforming existing methods on a range of metrics.
Related papers
- Provable Robust Saliency-based Explanations [16.217374556142484]
We show that R2ET attains higher explanation robustness under stealthy attacks while retaining model accuracy.
Experiments with a wide spectrum of network architectures and data modalities demonstrate that R2ET attains higher explanation robustness under stealthy attacks while retaining model accuracy.
arXiv Detail & Related papers (2022-12-28T22:05:32Z) - Quantifying Robustness to Adversarial Word Substitutions [24.164523751390053]
Deep-learning-based NLP models are found to be vulnerable to word substitution perturbations.
We propose a formal framework to evaluate word-level robustness.
metric helps us figure out why state-of-the-art models like BERT can be easily fooled by a few word substitutions.
arXiv Detail & Related papers (2022-01-11T08:18:39Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Towards Robust and Reliable Algorithmic Recourse [11.887537452826624]
We propose a novel framework, RObust Algorithmic Recourse (ROAR), that leverages adversarial training for finding recourses that are robust to model shifts.
We also carry out detailed theoretical analysis which underscores the importance of constructing recourses that are robust to model shifts.
arXiv Detail & Related papers (2021-02-26T17:38:52Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Data-Driven Robust Optimization using Unsupervised Deep Learning [0.0]
We show that a trained neural network can be integrated into a robust optimization model by formulating the adversarial problem as a convex mixed-integer program.
We find that this approach outperforms a similar approach using kernel-based support vector sets.
arXiv Detail & Related papers (2020-11-19T11:06:54Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - Towards a Theoretical Understanding of the Robustness of Variational
Autoencoders [82.68133908421792]
We make inroads into understanding the robustness of Variational Autoencoders (VAEs) to adversarial attacks and other input perturbations.
We develop a novel criterion for robustness in probabilistic models: $r$-robustness.
We show that VAEs trained using disentangling methods score well under our robustness metrics.
arXiv Detail & Related papers (2020-07-14T21:22:29Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.