論文の概要: Systematic Attack Surface Reduction For Deployed Sentiment Analysis
Models
- arxiv url: http://arxiv.org/abs/2006.11130v1
- Date: Fri, 19 Jun 2020 13:41:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 04:24:04.998569
- Title: Systematic Attack Surface Reduction For Deployed Sentiment Analysis
Models
- Title(参考訳): 展開感性解析モデルのためのシステム的攻撃面低減
- Authors: Josh Kalin, David Noever, Gerry Dozier
- Abstract要約: この研究は、モデルをベースライン化し、攻撃ベクトルを特定し、デプロイ後の機械学習モデルを保護するための構造化されたアプローチを提案する。
ブラックボックス感性分析システムにおいて,BADアーキテクチャを評価し,その逆のライフサイクルを定量的に評価する。
目標は、本番環境で機械学習モデルを確保するための実行可能な方法論を実証することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work proposes a structured approach to baselining a model, identifying
attack vectors, and securing the machine learning models after deployment. This
method for securing each model post deployment is called the BAD (Build,
Attack, and Defend) Architecture. Two implementations of the BAD architecture
are evaluated to quantify the adversarial life cycle for a black box Sentiment
Analysis system. As a challenging diagnostic, the Jigsaw Toxic Bias dataset is
selected as the baseline in our performance tool. Each implementation of the
architecture will build a baseline performance report, attack a common
weakness, and defend the incoming attack. As an important note: each attack
surface demonstrated in this work is detectable and preventable. The goal is to
demonstrate a viable methodology for securing a machine learning model in a
production setting.
- Abstract(参考訳): 本研究は,モデルのベースライン化,攻撃ベクトルの同定,デプロイ後の機械学習モデルのセキュア化のための構造化アプローチを提案する。
デプロイ後の各モデルを保証するこの方法は、BADアーキテクチャ(Build, Attack, and Defend)と呼ばれる。
BADアーキテクチャの2つの実装を評価し,ブラックボックスの知覚分析システムにおける逆のライフサイクルを定量化する。
難しい診断として、Jigsaw Toxic Biasデータセットがパフォーマンスツールのベースラインとして選択されます。
アーキテクチャの各実装は、ベースラインのパフォーマンスレポートを構築し、共通の弱点を攻撃し、入ってくる攻撃を防御する。
重要な点として、この研究で示された各攻撃面は検出可能であり、予防可能である。
目標は、プロダクション環境で機械学習モデルを確保するための実行可能な方法論を実証することである。
関連論文リスト
- MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction [0.8437187555622164]
MisGUIDE(ミスGUIDE)は、ディープラーニングモデルのための2段階の防御フレームワークである。
提案手法の目的は,真正クエリの精度を維持しつつ,クローンモデルの精度を下げることである。
論文 参考訳(メタデータ) (2024-03-27T13:59:21Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - A Simple Structure For Building A Robust Model [7.8383976168377725]
本研究では,ある程度のロバスト性を持つモデルを構築するためのシンプルなアーキテクチャを提案し,協調学習のための対向サンプル検出ネットワークを追加することにより,トレーニングネットワークのロバスト性を向上させる。
我々はCifar10データセットに基づいて,この設計の有効性をテストする実験を行った。
論文 参考訳(メタデータ) (2022-04-25T12:30:35Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Hiding Behind Backdoors: Self-Obfuscation Against Generative Models [8.782809316491948]
最近の研究では、物理的な世界で機械学習パイプラインを妥協する攻撃が実証されている。
攻撃者はシステム内の前処理モデルをターゲットにし、生成モデルのトレーニングセットに毒を加え、推論中に特定のクラスを難読化する。
論文 参考訳(メタデータ) (2022-01-24T16:05:41Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
機械学習モデルへのアクセスを考えると、敵はモデルのトレーニングデータを再構築できるだろうか?
本研究は、この疑問を、学習データポイントの全てを知っている強力な情報提供者のレンズから研究する。
この厳密な脅威モデルにおいて、残りのデータポイントを再構築することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-13T09:19:25Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
本論文では,NLPにおける構造化予測タスクに対する攻撃と防御について検討する。
構造化予測モデルの構造化出力は、入力中の小さな摂動に敏感である。
本稿では,シーケンス・ツー・シーケンス・モデルを用いて,構造化予測モデルへの攻撃を学習する,新規で統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-04T15:54:03Z) - Feature Partitioning for Robust Tree Ensembles and their Certification
in Adversarial Scenarios [8.300942601020266]
モデルが安全な環境でトレーニングされ、テスト時に攻撃にさらされる、回避攻撃に焦点を当てます。
我々は,与えられたデータセットの特徴に基づく分割に基づいて基本モデルをトレーニングすることにより,堅牢なアンサンブルを構築するモデルに依存しない戦略を提案する。
我々のアルゴリズムは、アンサンブルのほとんどのモデルが攻撃者の影響を受けないことを保証する。
論文 参考訳(メタデータ) (2020-04-07T12:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。