論文の概要: Hiding Behind Backdoors: Self-Obfuscation Against Generative Models
- arxiv url: http://arxiv.org/abs/2201.09774v1
- Date: Mon, 24 Jan 2022 16:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 20:03:51.419507
- Title: Hiding Behind Backdoors: Self-Obfuscation Against Generative Models
- Title(参考訳): バックドアの背後に隠れる:生成モデルに対する自己嫌悪
- Authors: Siddhartha Datta, Nigel Shadbolt
- Abstract要約: 最近の研究では、物理的な世界で機械学習パイプラインを妥協する攻撃が実証されている。
攻撃者はシステム内の前処理モデルをターゲットにし、生成モデルのトレーニングセットに毒を加え、推論中に特定のクラスを難読化する。
- 参考スコア(独自算出の注目度): 8.782809316491948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attack vectors that compromise machine learning pipelines in the physical
world have been demonstrated in recent research, from perturbations to
architectural components. Building on this work, we illustrate the
self-obfuscation attack: attackers target a pre-processing model in the system,
and poison the training set of generative models to obfuscate a specific class
during inference. Our contribution is to describe, implement and evaluate a
generalized attack, in the hope of raising awareness regarding the challenge of
architectural robustness within the machine learning community.
- Abstract(参考訳): 物理的世界の機械学習パイプラインを侵害する攻撃ベクトルは、摂動からアーキテクチャコンポーネントまで、最近の研究で実証されている。
攻撃者はシステム内で前処理モデルをターゲットにし、推論中に特定のクラスを難読化するために生成モデルのトレーニングセットを毒殺します。
当社の貢献は、マシンラーニングコミュニティにおけるアーキテクチャ堅牢性の課題に対する意識を高めるために、一般的な攻撃を記述、実装、評価することにあります。
関連論文リスト
- Model-agnostic clean-label backdoor mitigation in cybersecurity environments [6.857489153636145]
近年の研究では、セキュリティ分類タスク用に設計されたモデルにバックドアを注入する、一連の悪質な訓練時間攻撃が表面化している。
我々は、サイバーセキュリティ脅威モデルの洞察を活用して、これらのクリーンラベル中毒攻撃を効果的に軽減する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T03:25:40Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
機械学習モデルの敵攻撃に対する脆弱性は、近年、かなりの注目を集めている。
この研究は、個々のエージェントが様々な強度摂動空間に従属するグラフ上の敵の訓練を研究する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - Attacks in Adversarial Machine Learning: A Systematic Survey from the
Life-cycle Perspective [69.25513235556635]
敵対的機械学習(英: Adversarial Machine Learning、AML)は、機械学習の逆行現象を研究する。
機械学習システムの異なる段階で発生するこの敵対現象を探求するために、いくつかのパラダイムが最近開発された。
既存の攻撃パラダイムをカバーするための統一的な数学的枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-19T02:12:21Z) - The Space of Adversarial Strategies [6.295859509997257]
機械学習モデルにおける最悪のケース動作を誘発するインプットである逆例は、過去10年間に広く研究されてきた。
最悪の場合(すなわち最適な)敵を特徴づける体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-09-09T20:53:11Z) - On the Properties of Adversarially-Trained CNNs [4.769747792846005]
敵のトレーニングは、現代のニューラルネットワークアーキテクチャにおける敵の例に対して堅牢性を強制する効果的な訓練パラダイムであることが証明された。
敵攻撃に対するロバスト性を実装するメカニズムに光を当て、敵訓練されたモデルの驚くべき特性について述べる。
論文 参考訳(メタデータ) (2022-03-17T11:11:52Z) - SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with
Sparsification [24.053704318868043]
モデル中毒攻撃では、攻撃者は"poisoned"アップデートをアップロードすることで、ターゲットのサブタスクのパフォーマンスを低下させる。
本稿では,グローバルなトップk更新スペーシフィケーションとデバイスレベルのクリッピング勾配を利用して,モデル中毒攻撃を緩和する新しいディフェンスであるalgonameを紹介する。
論文 参考訳(メタデータ) (2021-12-12T16:34:52Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
本論文では,NLPにおける構造化予測タスクに対する攻撃と防御について検討する。
構造化予測モデルの構造化出力は、入力中の小さな摂動に敏感である。
本稿では,シーケンス・ツー・シーケンス・モデルを用いて,構造化予測モデルへの攻撃を学習する,新規で統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-04T15:54:03Z) - Systematic Attack Surface Reduction For Deployed Sentiment Analysis
Models [0.0]
この研究は、モデルをベースライン化し、攻撃ベクトルを特定し、デプロイ後の機械学習モデルを保護するための構造化されたアプローチを提案する。
ブラックボックス感性分析システムにおいて,BADアーキテクチャを評価し,その逆のライフサイクルを定量的に評価する。
目標は、本番環境で機械学習モデルを確保するための実行可能な方法論を実証することである。
論文 参考訳(メタデータ) (2020-06-19T13:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。