論文の概要: Backdoor Attacks to Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2006.11165v4
- Date: Fri, 17 Dec 2021 02:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 05:16:59.559861
- Title: Backdoor Attacks to Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークに対するバックドア攻撃
- Authors: Zaixi Zhang and Jinyuan Jia and Binghui Wang and Neil Zhenqiang Gong
- Abstract要約: グラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃を提案する。
我々のバックドア攻撃では、GNNは、事前に定義されたサブグラフがテストグラフに注入されると、テストグラフに対するアタッカー・チョーセンターゲットラベルを予測する。
実験の結果,我々のバックドア攻撃はクリーンなテストグラフに対するGNNの予測精度に小さな影響を与えていることがわかった。
- 参考スコア(独自算出の注目度): 73.56867080030091
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose the first backdoor attack to graph neural networks
(GNN). Specifically, we propose a \emph{subgraph based backdoor attack} to GNN
for graph classification. In our backdoor attack, a GNN classifier predicts an
attacker-chosen target label for a testing graph once a predefined subgraph is
injected to the testing graph. Our empirical results on three real-world graph
datasets show that our backdoor attacks are effective with a small impact on a
GNN's prediction accuracy for clean testing graphs. Moreover, we generalize a
randomized smoothing based certified defense to defend against our backdoor
attacks. Our empirical results show that the defense is effective in some cases
but ineffective in other cases, highlighting the needs of new defenses for our
backdoor attacks.
- Abstract(参考訳): 本研究では,グラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃を提案する。
具体的には,グラフ分類のためのGNNに対して,emph{subgraph based backdoor attack}を提案する。
バックドア攻撃において、gnn分類器は、予め定義されたサブグラフがテストグラフに注入されると、テストグラフのアタッカー・チョンターゲットラベルを予測する。
実世界の3つのグラフデータセットに対する実験結果から、我々のバックドア攻撃は、クリーンなテストグラフに対するGNNの予測精度に小さな影響を与えて有効であることが示された。
さらに,無作為なスムーシングに基づく認証防御を一般化し,バックドア攻撃に対する防御を行う。
実験結果から,バックドア攻撃に対する新たな防御の必要性を浮き彫りにして,防衛が有効であるケースもあるが,他のケースでは有効ではないことが示唆された。
関連論文リスト
- Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses [50.53476890313741]
我々は,FedGLに対する効果的な,ステルス的で永続的なバックドア攻撃を提案する。
我々は,任意の位置において任意の形状のトリガに対して,バックドアのFedGLモデルに対する認証された防御を開発する。
我々の攻撃結果は、ほぼ全てのデータセットで90%以上のバックドア精度が得られることを示している。
論文 参考訳(メタデータ) (2024-07-12T02:43:44Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
グラフニューラルネットワーク(GNN)は,ノード分類やグラフ分類といったタスクにおいて,有望な結果を達成している。
最近の研究で、GNNはバックドア攻撃に弱いことが判明し、実際の採用に重大な脅威をもたらしている。
本研究では,裏口検出にランダムなエッジドロップを用いることにより,汚染ノードとクリーンノードを効率的に識別できることを理論的に示す。
論文 参考訳(メタデータ) (2024-06-14T08:46:26Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
特に、バックドアアタックは、トレーニンググラフ内の一連のノードにトリガーとターゲットクラスラベルをアタッチすることで、グラフを毒する。
本稿では,攻撃予算が制限されたグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2023-02-11T01:50:58Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Defending Against Backdoor Attack on Graph Nerual Network by
Explainability [7.147386524788604]
GNNにおける最初のバックドア検出・防御手法を提案する。
グラフデータでは、現在のバックドアアタックは、トリガーを注入するためにグラフ構造を操作することに焦点を当てている。
その結果,いくつかの説明的評価指標では,良性サンプルと悪質サンプルとの間に明らかな違いがあることが判明した。
論文 参考訳(メタデータ) (2022-09-07T03:19:29Z) - Test-Time Detection of Backdoor Triggers for Poisoned Deep Neural
Networks [24.532269628999025]
深層ニューラルネットワーク(DNN)に対するバックドア(トロイの木馬)攻撃が出現
本稿では,画像分類に対するバックドア攻撃に対する「飛行中」防御法を提案する。
論文 参考訳(メタデータ) (2021-12-06T20:52:00Z) - Explainability-based Backdoor Attacks Against Graph Neural Networks [9.179577599489559]
ニューラルネットワークにはバックドア攻撃に関する多くの研究があるが、グラフニューラルネットワーク(gnn)を考えるものはごくわずかである。
我々は2つの強力なGNN説明可能性アプローチを適用し、最適なトリガー注入位置を選択し、2つの攻撃目標を達成します。
ベンチマークデータセットと最先端ニューラルネットワークモデルを用いた実験結果から,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2021-04-08T10:43:40Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z) - Defending against Backdoor Attack on Deep Neural Networks [98.45955746226106]
トレーニングデータの一部にバックドアトリガーを注入する、いわゆるテキストバックドア攻撃について検討する。
実験の結果,本手法は攻撃成功率を効果的に低減し,クリーン画像の分類精度も高いことがわかった。
論文 参考訳(メタデータ) (2020-02-26T02:03:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。