論文の概要: MADE: Graph Backdoor Defense with Masked Unlearning
- arxiv url: http://arxiv.org/abs/2411.18648v2
- Date: Tue, 31 Dec 2024 02:11:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:35:23.693459
- Title: MADE: Graph Backdoor Defense with Masked Unlearning
- Title(参考訳): MADE:masked Unlearningによるグラフバックドアディフェンス
- Authors: Xiao Lin, Mingjie Li, Yisen Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ関連タスクの処理能力に優れていたため、研究者から大きな注目を集めている。
最近の研究では、GNNはトレーニングデータセットにトリガを注入することで実装されたバックドア攻撃に対して脆弱であることが示されている。
この脆弱性は、薬物発見のようなセンシティブなドメインにおけるGNNの応用に重大なセキュリティリスクをもたらす。
- 参考スコア(独自算出の注目度): 24.97718571096943
- License:
- Abstract: Graph Neural Networks (GNNs) have garnered significant attention from researchers due to their outstanding performance in handling graph-related tasks, such as social network analysis, protein design, and so on. Despite their widespread application, recent research has demonstrated that GNNs are vulnerable to backdoor attacks, implemented by injecting triggers into the training datasets. Trained on the poisoned data, GNNs will predict target labels when attaching trigger patterns to inputs. This vulnerability poses significant security risks for applications of GNNs in sensitive domains, such as drug discovery. While there has been extensive research into backdoor defenses for images, strategies to safeguard GNNs against such attacks remain underdeveloped. Furthermore, we point out that conventional backdoor defense methods designed for images cannot work well when directly implemented on graph data. In this paper, we first analyze the key difference between image backdoor and graph backdoor attacks. Then we tackle the graph defense problem by presenting a novel approach called MADE, which devises an adversarial mask generation mechanism that selectively preserves clean sub-graphs and further leverages masks on edge weights to eliminate the influence of triggers effectively. Extensive experiments across various graph classification tasks demonstrate the effectiveness of MADE in significantly reducing the attack success rate (ASR) while maintaining a high classification accuracy.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ソーシャルネットワーク分析やタンパク質設計など、グラフ関連タスクの処理能力に優れていたため、研究者から大きな注目を集めている。
広く応用されているにもかかわらず、最近の研究は、GNNがトレーニングデータセットにトリガを注入することによって実装されたバックドア攻撃に弱いことを実証している。
有毒データに基づいてトレーニングされたGNNは、入力にトリガーパターンをアタッチする際のターゲットラベルを予測する。
この脆弱性は、薬物発見のようなセンシティブなドメインにおけるGNNの応用に重大なセキュリティリスクをもたらす。
画像のバックドア防御について広範な研究がなされているが、そのような攻撃に対してGNNを保護するための戦略は未開発のままである。
さらに,画像データに直接実装しても,従来のバックドアディフェンス方式ではうまく動作しない点を指摘する。
本稿ではまず,画像バックドア攻撃とグラフバックドア攻撃の主な違いを解析する。
そこで我々は,クリーンなサブグラフを選択的に保存する対向マスク生成機構を考案し,さらにエッジ重みのマスクを活用してトリガの影響を効果的に除去するMADEという新しい手法を提案する。
様々なグラフ分類タスクにわたる大規模な実験は、高い分類精度を維持しながら、攻撃成功率(ASR)を著しく低減するMADEの有効性を示す。
関連論文リスト
- On the Robustness of Graph Reduction Against GNN Backdoor [9.377257547233919]
グラフニューラルネットワーク(GNN)は,グラフ構造化データ学習の有効性から,さまざまな領域で人気を集めている。
バックドア中毒は、現実世界の応用に深刻な脅威をもたらす。
粗大化やスパシフィケーションを含むグラフ削減技術は、大規模グラフ上でのGNNトレーニングを加速する有効な方法として現れている。
論文 参考訳(メタデータ) (2024-07-02T17:08:38Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
グラフニューラルネットワーク(GNN)は,ノード分類やグラフ分類といったタスクにおいて,有望な結果を達成している。
最近の研究で、GNNはバックドア攻撃に弱いことが判明し、実際の採用に重大な脅威をもたらしている。
本研究では,裏口検出にランダムなエッジドロップを用いることにより,汚染ノードとクリーンノードを効率的に識別できることを理論的に示す。
論文 参考訳(メタデータ) (2024-06-14T08:46:26Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
グラフニューラルネットワーク(GNN)は、様々なタスクにおいて顕著なパフォーマンスを示している。
バックドア攻撃は、トレーニンググラフ内のノードのセットにバックドアトリガとターゲットクラスラベルをアタッチすることで、グラフを汚染する。
本稿では,IDトリガによる無意味なグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2024-05-17T13:09:39Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
特に、バックドアアタックは、トレーニンググラフ内の一連のノードにトリガーとターゲットクラスラベルをアタッチすることで、グラフを毒する。
本稿では,攻撃予算が制限されたグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2023-02-11T01:50:58Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
我々は,グラフ構造の摂動によるグラフ分類のためのGNNに対する敵対的攻撃について,系統的研究を行った。
我々は、高い攻撃成功率を維持しながら、グラフ内で摂動するエッジの数を最小化する最適化問題として、我々の攻撃を定式化する。
実世界の3つのデータセットに対する実験結果から,クエリや摂動を少なくして,グラフ分類のための代表的GNNを効果的に攻撃できることが示された。
論文 参考訳(メタデータ) (2021-08-21T14:01:34Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
グラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃を提案する。
我々のバックドア攻撃では、GNNは、事前に定義されたサブグラフがテストグラフに注入されると、テストグラフに対するアタッカー・チョーセンターゲットラベルを予測する。
実験の結果,我々のバックドア攻撃はクリーンなテストグラフに対するGNNの予測精度に小さな影響を与えていることがわかった。
論文 参考訳(メタデータ) (2020-06-19T14:51:01Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。