Using an atom interferometer to infer gravitational entanglement
generation
- URL: http://arxiv.org/abs/2101.11629v3
- Date: Wed, 26 Jan 2022 03:57:51 GMT
- Title: Using an atom interferometer to infer gravitational entanglement
generation
- Authors: Daniel Carney, Holger M\"uller, Jacob M. Taylor
- Abstract summary: We introduce the concept of interactive quantum information sensing.
We show that this protocol is highly robust to typical thermal noise sources.
Preliminary numerical estimates suggest that near-term devices could feasibly be used to perform the experiment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: If gravitational perturbations are quantized into gravitons in analogy with
the electromagnetic field and photons, the resulting graviton interactions
should lead to an entangling interaction between massive objects. We suggest a
test of this prediction. To do this, we introduce the concept of interactive
quantum information sensing. This novel sensing protocol is tailored to
provable verification of weak dynamical entanglement generation between a pair
of systems. We show that this protocol is highly robust to typical thermal
noise sources. The sensitivity can moreover be increased both using an initial
thermal state and/or an initial phase of entangling via a non-gravitational
interaction. We outline a concrete implementation testing the ability of the
gravitational field to generate entanglement between an atomic interferometer
and mechanical oscillator. Preliminary numerical estimates suggest that
near-term devices could feasibly be used to perform the experiment.
Related papers
- Essential role of destructive interference in the gravitationally
induced entanglement [0.0]
The present paper analyzes the gravitationally induced entanglement as a pure interference effect.
The non-maximally entangled state can be extremely effective for experimental testing.
arXiv Detail & Related papers (2024-01-09T12:24:32Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Strongly incoherent gravity [0.0]
A non-entangling version of an arbitrary two-body potential $V(r)$ arises from local measurements and feedback forces.
This produces a non-relativistic model of gravity with fundamental loss of unitarity.
As an alternative to testing entanglement properties, we show that the entire remaining parameter space can be tested by looking for loss of quantum coherence in small systems.
arXiv Detail & Related papers (2023-01-20T01:09:12Z) - Quantum Gravitational Sensor for Space Debris [0.0]
We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
arXiv Detail & Related papers (2022-11-28T19:00:03Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Enhancing Gravitational Interaction between Quantum Systems by a Massive
Mediator [1.6114012813668934]
In 1957 Feynman suggested that the quantum/classical character of gravity may be assessed by testing the gravitational interaction due to source masses in superposition.
In all proposed experimental realisations using matter-wave interferometry the extreme weakness of this interaction requires pure initial states with extreme squeezing.
Here we address this key challenge by using a massive body as an amplifying mediator of gravitational interaction between two test systems.
arXiv Detail & Related papers (2021-04-29T17:42:07Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.