論文の概要: Valid Causal Inference with (Some) Invalid Instruments
- arxiv url: http://arxiv.org/abs/2006.11386v1
- Date: Fri, 19 Jun 2020 21:09:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 04:33:11.855356
- Title: Valid Causal Inference with (Some) Invalid Instruments
- Title(参考訳): 何らかの)無効な手段による正当な因果推論
- Authors: Jason Hartford, Victor Veitch, Dhanya Sridhar, Kevin Leyton-Brown
- Abstract要約: 排他的仮定違反にも拘わらず、一貫したIV推定を行う方法を示す。
我々は,深層ネットワークに基づく推定器のアンサンブルを用いて条件平均処理効果を正確に推定する。
- 参考スコア(独自算出の注目度): 24.794879633855373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instrumental variable methods provide a powerful approach to estimating
causal effects in the presence of unobserved confounding. But a key challenge
when applying them is the reliance on untestable "exclusion" assumptions that
rule out any relationship between the instrument variable and the response that
is not mediated by the treatment. In this paper, we show how to perform
consistent IV estimation despite violations of the exclusion assumption. In
particular, we show that when one has multiple candidate instruments, only a
majority of these candidates---or, more generally, the modal candidate-response
relationship---needs to be valid to estimate the causal effect. Our approach
uses an estimate of the modal prediction from an ensemble of instrumental
variable estimators. The technique is simple to apply and is "black-box" in the
sense that it may be used with any instrumental variable estimator as long as
the treatment effect is identified for each valid instrument independently. As
such, it is compatible with recent machine-learning based estimators that allow
for the estimation of conditional average treatment effects (CATE) on complex,
high dimensional data. Experimentally, we achieve accurate estimates of
conditional average treatment effects using an ensemble of deep network-based
estimators, including on a challenging simulated Mendelian Randomization
problem.
- Abstract(参考訳): インストゥルメンタル変数法は、観測されていない共役の存在下で因果効果を推定する強力なアプローチを提供する。
しかし、それらを適用する際の重要な課題は、機器変数と治療によって媒介されない反応との関係を除外する、証明不可能な「排除」仮定に依存することである。
本稿では,排他的仮定に反するにもかかわらず,一貫したIV推定を行う方法を示す。
特に、複数の候補機器がある場合、これらの候補の過半数(あるいはより一般的には、モーダルな候補-応答関係)が因果効果を推定するのに有効であることを示す。
本手法では,機器変数推定器のアンサンブルからモーダル予測を推定する。
このテクニックは簡単に適用でき、各有効な機器に対して処理効果が独立に特定される限り、任意の機器変数推定器で使用することができるという意味で「ブラックボックス」である。
このように、複雑な高次元データに対して条件平均処理効果(CATE)を推定できる最近の機械学習ベースの推定器と互換性がある。
実験では, 深層ネットワークに基づく推定器のアンサンブルを用いて, 条件付き平均治療効果の正確な推定を行う。
関連論文リスト
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Bounding Causal Effects with Leaky Instruments [6.2316012741781295]
我々は、$textitleakyのセットを与えられた線形システムで$textitpartial$識別を提供する新しいソリューションを提案する。
我々は,情報漏洩の一般的な形態の下で,平均処理効果を確実にシャープに制限する凸最適化目標を導出する。
論文 参考訳(メタデータ) (2024-04-05T23:17:25Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
結果に対する治療の平均因果効果(ACE)を評価することは、しばしば観察研究における要因の相違によって引き起こされる課題を克服することを伴う。
本稿では,目標最小損失推定理論に基づいて,正面基準の新たな推定手法を提案する。
本研究では,早期学業成績が今後の年収に与える影響を明らかにするために,これらの推定装置の適用性を示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - Counterfactual Inference of the Mean Outcome under a Convergence of
Average Logging Probability [5.596752018167751]
本稿では,適応実験で得られたサンプルから,アクションの平均結果を推定する。
適応実験では、過去の観測に基づいて行動を選択する確率を逐次更新することができる。
論文 参考訳(メタデータ) (2021-02-17T19:05:53Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
そこで本研究では,反ファクトや個々の治療効果について,信頼できる間隔を推定できる共形推論に基づく手法を提案する。
既存の手法は、単純なモデルであってもかなりのカバレッジの欠陥に悩まされる。
論文 参考訳(メタデータ) (2020-06-11T01:03:32Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。