論文の概要: Pedestrian Tracking with Gated Recurrent Units and Attention Mechanisms
- arxiv url: http://arxiv.org/abs/2006.11407v1
- Date: Sun, 31 May 2020 23:58:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 12:14:43.439250
- Title: Pedestrian Tracking with Gated Recurrent Units and Attention Mechanisms
- Title(参考訳): ゲートリカレントユニットとアテンション機構を用いた歩行者追跡
- Authors: Mahdi Elhousni and Xinming Huang
- Abstract要約: 歩行者の変位や方向を予測するために,センサデータをディープラーニングモデルに入力する手法を提案する。
予備結果は有望であり、より多くのデータを収集し、すべての一般歩行者運動にディープラーニングモデルを適用することでこれを前進させる計画である。
- 参考スコア(独自算出の注目度): 7.355731223877616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian tracking has long been considered an important problem, especially
in security applications. Previously,many approaches have been proposed with
various types of sensors. One popular method is Pedestrian Dead Reckoning(PDR)
[1] which is based on the inertial measurement unit(IMU) sensor. However PDR is
an integration and threshold based method, which suffers from accumulation
errors and low accuracy. In this paper, we propose a novel method in which the
sensor data is fed into a deep learning model to predict the displacements and
orientations of the pedestrian. We also devise a new apparatus to collect and
construct databases containing synchronized IMU sensor data and precise
locations measured by a LIDAR. The preliminary results are promising, and we
plan to push this forward by collecting more data and adapting the deep
learning model for all general pedestrian motions.
- Abstract(参考訳): 歩行者追跡は、特にセキュリティアプリケーションにおいて、長い間重要な問題と考えられてきた。
これまで、様々な種類のセンサで多くのアプローチが提案されてきた。
1つの一般的な方法は、慣性測定ユニット(IMU)センサーに基づくPDR(Pedestrian Dead Reckoning)[1]である。
しかし、pdrは集積誤差と精度の低下に苦しむ統合およびしきい値ベース手法である。
本稿では,センサデータを深層学習モデルに入力し,歩行者の変位や方向を予測する新しい手法を提案する。
また,idmセンサデータとlidarで測定した正確な位置を含むデータベースを収集・構築する装置を新たに開発した。
予備結果は有望であり、より多くのデータを収集し、全歩行者運動にディープラーニングモデルを適用することでこれを前進させる計画である。
関連論文リスト
- SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT
Systems [0.0]
本論文は,センサ障害を同時に緩和するための積極的なアプローチであるSECOEを提案する。
SECOEは、センサー間の相関を利用してアンサンブル内のモデル数を最小化する新しい技術を含んでいる。
実験の結果,SECOEはセンサ故障の有無の予測精度を効果的に維持することがわかった。
論文 参考訳(メタデータ) (2022-10-05T10:58:39Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
スマートマニュファクチャリングシステムの目標は、運用コストを削減し、ダウンタイムをなくすために、失敗を迅速に検出(または予測)することである。
これはしばしば、システムから取得したセンサーの日程内で異常を検出することに起因する。
スマートマニュファクチャリングアプリケーションドメインは、ある種の健全な技術的課題を提起します。
予測的障害分類が達成できることを示し、予測的メンテナンスの道を開く。
論文 参考訳(メタデータ) (2022-06-13T17:51:24Z) - Forecasting from LiDAR via Future Object Detection [47.11167997187244]
そこで本研究では,センサの生計測に基づく検出と動作予測のためのエンドツーエンドアプローチを提案する。
未来と現在の場所を多対一でリンクすることで、我々のアプローチは複数の未来を推論することができる。
論文 参考訳(メタデータ) (2022-03-30T13:40:28Z) - Pedestrian Detection: Domain Generalization, CNNs, Transformers and
Beyond [82.37430109152383]
その結果、現在の歩行者検知器は、クロスデータセット評価において、たとえ小さな領域シフトであっても処理が不十分であることがわかった。
限定的な一般化は、その方法と現在のデータ源の2つの主要な要因に帰着する。
本稿では、一般化を改善する進歩的な微調整戦略を提案する。
論文 参考訳(メタデータ) (2022-01-10T06:00:26Z) - Deep Phase Correlation for End-to-End Heterogeneous Sensor Measurements
Matching [12.93459392278491]
不均一なセンサ計測に適合するエンド・ツー・エンドのディープ位相相関ネットワーク(DPCN)を提案する。
主なコンポーネントは、学習可能な特徴抽出器にポーズエラーをバックプロパゲートする、微分可能な相関ベースの推定器である。
解釈可能なモデリングにより、ネットワークは軽量化され、より良い一般化が期待できる。
論文 参考訳(メタデータ) (2020-08-21T13:42:25Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
融解したLiDAR点雲と単一LiDAR点雲との差について検討した。
抽出した軌道の評価は, 融合インフラストラクチャーアプローチが追跡結果を著しく増加させ, 数cm以内の精度に達することを示す。
論文 参考訳(メタデータ) (2020-06-22T10:57:52Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
混み合ったシーンにおける高過度なインスタンスを検出することを目的とした,提案手法によるオブジェクト検出手法を提案する。
このアプローチの鍵は、各提案が以前の提案ベースのフレームワークの1つではなく、関連したインスタンスのセットを予測できるようにすることです。
我々の検出器は、CrowdHumanデータセットの挑戦に対して4.9%のAPゲインを得ることができ、CityPersonsデータセットでは1.0%$textMR-2$の改善がある。
論文 参考訳(メタデータ) (2020-03-20T09:48:53Z) - Generalizable Pedestrian Detection: The Elephant In The Room [82.37430109152383]
既存の最先端の歩行者検出器は、同じデータセット上でトレーニングやテストを行う際には、非常によく機能するが、データセット間の評価では、十分に一般化されていない。
ウェブをクロールすることで収集される多様で高密度なデータセットは、歩行者検出のための事前学習の効率的な情報源であることを示す。
論文 参考訳(メタデータ) (2020-03-19T14:14:52Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。