論文の概要: Forecasting from LiDAR via Future Object Detection
- arxiv url: http://arxiv.org/abs/2203.16297v2
- Date: Thu, 31 Mar 2022 14:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 12:53:47.005821
- Title: Forecasting from LiDAR via Future Object Detection
- Title(参考訳): 将来の物体検出によるLiDARからの予測
- Authors: Neehar Peri, Jonathon Luiten, Mengtian Li, Aljo\v{s}a O\v{s}ep, Laura
Leal-Taix\'e, Deva Ramanan
- Abstract要約: そこで本研究では,センサの生計測に基づく検出と動作予測のためのエンドツーエンドアプローチを提案する。
未来と現在の場所を多対一でリンクすることで、我々のアプローチは複数の未来を推論することができる。
- 参考スコア(独自算出の注目度): 47.11167997187244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection and forecasting are fundamental components of embodied
perception. These two problems, however, are largely studied in isolation by
the community. In this paper, we propose an end-to-end approach for detection
and motion forecasting based on raw sensor measurement as opposed to ground
truth tracks. Instead of predicting the current frame locations and forecasting
forward in time, we directly predict future object locations and backcast to
determine where each trajectory began. Our approach not only improves overall
accuracy compared to other modular or end-to-end baselines, it also prompts us
to rethink the role of explicit tracking for embodied perception. Additionally,
by linking future and current locations in a many-to-one manner, our approach
is able to reason about multiple futures, a capability that was previously
considered difficult for end-to-end approaches. We conduct extensive
experiments on the popular nuScenes dataset and demonstrate the empirical
effectiveness of our approach. In addition, we investigate the appropriateness
of reusing standard forecasting metrics for an end-to-end setup, and find a
number of limitations which allow us to build simple baselines to game these
metrics. We address this issue with a novel set of joint forecasting and
detection metrics that extend the commonly used AP metrics from the detection
community to measuring forecasting accuracy. Our code is available at
https://github.com/neeharperi/FutureDet
- Abstract(参考訳): 物体検出と予測は、具体化知覚の基本的な構成要素である。
しかし、これらの2つの問題はコミュニティによって主に研究されている。
本稿では,地中真実の軌跡ではなく,原位置センサによる検出と動き予測のためのエンドツーエンドアプローチを提案する。
現在のフレームの位置を予測し、時間内に前方に予測する代わりに、将来のオブジェクトの位置とバックキャストを直接予測して、それぞれの軌道がどこから始まったかを決定する。
我々のアプローチは他のモジュラーベースラインやエンド・ツー・エンドベースラインと比べて全体的な精度を向上させるだけでなく、具体化された知覚に対する明示的な追跡の役割を再考する。
さらに、将来と現在の場所を多対一でリンクすることで、これまでエンドツーエンドのアプローチでは難しいと考えられていた、複数の未来を推論することができます。
我々は,人気のあるnuscenesデータセットを広範囲に実験し,このアプローチの実証的有効性を示す。
さらに、エンド・ツー・エンドの設定で標準予測メトリクスを再利用することの適切性を調査し、これらのメトリクスを競うための単純なベースラインを構築するための多くの制限を見つける。
本稿では,検出コミュニティから一般的なAPメトリクスを拡張し,予測精度を計測する,新しい共同予測・検出指標を用いてこの問題に対処する。
私たちのコードはhttps://github.com/neeharperi/FutureDetで利用可能です。
関連論文リスト
- Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
実世界の知覚入力を用いた予測手法の統一評価パイプラインを提案する。
我々の詳細な調査では、キュレートされたデータから知覚ベースのデータへ移行する際の大きなパフォーマンスギャップが明らかになりました。
論文 参考訳(メタデータ) (2023-06-15T17:03:14Z) - LMD: Light-weight Prediction Quality Estimation for Object Detection in
Lidar Point Clouds [3.927702899922668]
Lidarのクラウドデータのオブジェクト検出は、自動運転とロボット工学にとって有望な技術だ。
不確実性推定は下流タスクにとって重要な要素であり、ディープニューラルネットワークは信頼性の高い予測であってもエラーを起こしやすい。
予測品質推定のための軽量後処理方式LidarMetaDetectを提案する。
本実験は,偽予測から真を分離する際の統計的信頼性を著しく向上させることを示した。
論文 参考訳(メタデータ) (2023-06-13T15:13:29Z) - Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
Uncertainty [125.41260574344933]
エンコーダ・デコーダをベースとした深層アンサンブルネットワークは,認識と予測の不確実性の両方を同時に捕捉する。
全体として、深層アンサンブルはより堅牢な予測を提供し、上流の不確実性の考慮により、モデルの推定精度をさらに高めた。
論文 参考訳(メタデータ) (2023-05-26T04:27:48Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - MTP: Multi-Hypothesis Tracking and Prediction for Reduced Error
Propagation [39.41917241231786]
本稿では,トラッキングモジュールと予測モジュールの結合に着目し,カスケードエラーの問題に対処する。
最先端の追跡・予測ツールを用いて,追跡による誤差が予測性能に与える影響を総合的に評価した。
このフレームワークは、nuScenesデータセット上で標準の単一仮説追跡予測パイプラインを最大34.2%改善する。
論文 参考訳(メタデータ) (2021-10-18T17:30:59Z) - Online Co-movement Pattern Prediction in Mobility Data [1.5790464310310084]
私達は共同動きパターンのオンライン予測の問題の正確な解決を提供します。
本手法の精度を計算するために,共動パターン類似度測定法を提案する。
本ソリューションの精度は,海事領域の実際のデータセット上で実験的に実証される。
論文 参考訳(メタデータ) (2021-02-17T17:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。