Pruning the Pilots: Deep Learning-Based Pilot Design and Channel
Estimation for MIMO-OFDM Systems
- URL: http://arxiv.org/abs/2006.11796v3
- Date: Mon, 12 Apr 2021 22:38:28 GMT
- Title: Pruning the Pilots: Deep Learning-Based Pilot Design and Channel
Estimation for MIMO-OFDM Systems
- Authors: Mahdi Boloursaz Mashhadi and Deniz Gunduz
- Abstract summary: We propose a neural network (NN)-based joint pilot design and downlink channel estimation scheme.
The proposed NN architecture uses fully connected layers for frequency-aware pilot design and outperforms linear minimum mean square error (LMMSE) estimation.
We also propose an effective pilot reduction technique by gradually pruning less significant neurons from the dense NN layers during training.
- Score: 8.401473551081748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the large number of antennas and subcarriers the overhead due to pilot
transmission for channel estimation can be prohibitive in wideband massive
multiple-input multiple-output (MIMO) systems. This can degrade the overall
spectral efficiency significantly, and as a result, curtail the potential
benefits of massive MIMO. In this paper, we propose a neural network (NN)-based
joint pilot design and downlink channel estimation scheme for frequency
division duplex (FDD) MIMO orthogonal frequency division multiplex (OFDM)
systems. The proposed NN architecture uses fully connected layers for
frequency-aware pilot design, and outperforms linear minimum mean square error
(LMMSE) estimation by exploiting inherent correlations in MIMO channel matrices
utilizing convolutional NN layers. Our proposed NN architecture uses a
non-local attention module to learn longer range correlations in the channel
matrix to further improve the channel estimation performance. We also propose
an effective pilot reduction technique by gradually pruning less significant
neurons from the dense NN layers during training. This constitutes a novel
application of NN pruning to reduce the pilot transmission overhead. Our
pruning-based pilot reduction technique reduces the overhead by allocating
pilots across subcarriers non-uniformly and exploiting the inter-frequency and
inter-antenna correlations in the channel matrix efficiently through
convolutional layers and attention module.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes.
To ease communication burden, over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication.
arXiv Detail & Related papers (2022-10-07T15:39:11Z) - Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation [35.62977046569772]
We develop an unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model.
We then formulate channel estimation from a limited number of pilot measurements as an inverse problem.
Our proposed framework has the potential to be trained online using real noisy pilot measurements.
arXiv Detail & Related papers (2022-05-25T02:26:34Z) - Alternating Channel Estimation and Prediction for Cell-Free mMIMO with
Channel Aging: A Deep Learning Based Scheme [17.486123129104882]
In large scale dynamic wireless networks, the amount of overhead caused by channel estimation (CE) is becoming one of the main performance bottlenecks.
We propose a new hybrid channel estimation/prediction scheme to reduce overhead in time-division duplex (TDD) wireless cell-free massive multiple-input-multiple-output (mMIMO) systems.
arXiv Detail & Related papers (2022-04-16T20:27:01Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.