論文の概要: Guiding Attention using Partial-Order Relationships for Image Captioning
- arxiv url: http://arxiv.org/abs/2204.07476v1
- Date: Fri, 15 Apr 2022 14:22:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-18 15:26:09.019352
- Title: Guiding Attention using Partial-Order Relationships for Image Captioning
- Title(参考訳): 部分順序関係を用いた画像キャプションの誘導
- Authors: Murad Popattia, Muhammad Rafi, Rizwan Qureshi, Shah Nawaz
- Abstract要約: 誘導注意ネットワーク機構は、視覚シーンとテキスト記述の関係を利用する。
この埋め込み空間は、共有セマンティック空間における類似の画像、トピック、キャプションを許容する。
MSCOCOデータセットに基づく実験結果は,我々のアプローチの競争力を示している。
- 参考スコア(独自算出の注目度): 2.620091916172863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of attention models for automated image captioning has enabled many
systems to produce accurate and meaningful descriptions for images. Over the
years, many novel approaches have been proposed to enhance the attention
process using different feature representations. In this paper, we extend this
approach by creating a guided attention network mechanism, that exploits the
relationship between the visual scene and text-descriptions using spatial
features from the image, high-level information from the topics, and temporal
context from caption generation, which are embedded together in an ordered
embedding space. A pairwise ranking objective is used for training this
embedding space which allows similar images, topics and captions in the shared
semantic space to maintain a partial order in the visual-semantic hierarchy and
hence, helps the model to produce more visually accurate captions. The
experimental results based on MSCOCO dataset shows the competitiveness of our
approach, with many state-of-the-art models on various evaluation metrics.
- Abstract(参考訳): 自動キャプションのための注意モデルの使用により、多くのシステムが画像の正確で意味のある記述を作成できるようになった。
長年にわたり、異なる特徴表現を用いた注意プロセスを強化するために多くの新しいアプローチが提案されてきた。
本稿では,画像からの空間的特徴,トピックからの高レベル情報,および順序付けされた埋め込み空間に埋め込まれたキャプション生成からの時間的文脈を用いて,視覚的シーンとテキスト記述の関係を利用した注意ネットワーク機構を構築することによって,このアプローチを拡張した。
ペアワイズランキングの目的は、同じイメージ、トピック、キャプションを共有セマンティック空間に組み込むことで、視覚・セマンティック階層の部分的な順序を維持することができ、それによってモデルがより視覚的に正確なキャプションを生成するのに役立つ。
MSCOCOデータセットをベースとした実験結果から,様々な評価指標の最先端モデルを用いて,我々のアプローチの競争力を示す。
関連論文リスト
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
本研究は,外部kNNメモリを用いた画像キャプションモデルの構築に向けた新しい手法を提案する。
具体的には、視覚的類似性に基づく知識検索コンポーネントを組み込んだ2つのモデル変種を提案する。
我々はCOCOデータセットとnocapsデータセットに対する我々のアプローチを実験的に検証し、明示的な外部メモリを組み込むことでキャプションの品質を著しく向上させることができることを示した。
論文 参考訳(メタデータ) (2024-05-21T18:02:07Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
対照的に訓練された視覚言語モデルは、視覚と言語表現学習において顕著な進歩を遂げた。
近年の研究では、対象、属性、関係性に対して構成的推論を行う能力に厳しい制限が強調されている。
論文 参考訳(メタデータ) (2023-05-23T08:28:38Z) - Multi-modal reward for visual relationships-based image captioning [4.354364351426983]
本稿では、画像のシーングラフから抽出した視覚的関係情報を画像の空間的特徴マップに融合させることにより、画像キャプションのためのディープニューラルネットワークアーキテクチャを提案する。
次に、共通埋め込み空間における言語と視覚の類似性の組み合わせを用いて、提案するネットワークの深層強化学習のためにマルチモーダル報酬関数を導入する。
論文 参考訳(メタデータ) (2023-03-19T20:52:44Z) - Stacked Cross-modal Feature Consolidation Attention Networks for Image
Captioning [1.4337588659482516]
本稿では,高レベルなセマンティック概念と視覚情報を統合するための特徴合成手法を利用する。
画像キャプションのための重畳型クロスモーダル特徴統合(SCFC)アテンションネットワークを提案し,同時にクロスモーダル特徴を集約する。
提案したSCFCは、MSCOCOとFlickr30Kデータセットの一般的な指標から、様々な最先端の画像キャプションベンチマークを上回ります。
論文 参考訳(メタデータ) (2023-02-08T09:15:09Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Boost Image Captioning with Knowledge Reasoning [10.733743535624509]
本稿では,単語ごとの逐次的な記述を生成する際の視覚的注意の正しさを改善するために,単語注意を提案する。
本稿では,知識グラフから抽出した外部知識をエンコーダ・デコーダ・フレームワークに注入し,意味のあるキャプションを容易にする新しい手法を提案する。
論文 参考訳(メタデータ) (2020-11-02T12:19:46Z) - Dense Relational Image Captioning via Multi-task Triple-Stream Networks [95.0476489266988]
視覚的な場面におけるオブジェクト間の情報に関して,キャプションを生成することを目的とした新しいタスクである。
このフレームワークは、多様性と情報の量の両方において有利であり、包括的なイメージ理解につながる。
論文 参考訳(メタデータ) (2020-10-08T09:17:55Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。