論文の概要: Subspace Clustering for Action Recognition with Covariance
Representations and Temporal Pruning
- arxiv url: http://arxiv.org/abs/2006.11812v1
- Date: Sun, 21 Jun 2020 14:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 11:59:08.599838
- Title: Subspace Clustering for Action Recognition with Covariance
Representations and Temporal Pruning
- Title(参考訳): 共分散表現と時間的プルーニングを用いた行動認識のための部分空間クラスタリング
- Authors: Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan and Alessio Del Bue
- Abstract要約: 本稿では、骨格データから、どのアクションがトリミングシーケンスで表示されるかの分類として定義される人間の行動認識の問題に取り組む。
本研究では,行動の識別性を高めるために共分散行列を利用する新しいサブスペースクラスタリング法と,データの時間次元をよりよく扱えるタイムスタンプ・プルーニング手法を提案する。
- 参考スコア(独自算出の注目度): 20.748083855677816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the problem of human action recognition, defined as
classifying which action is displayed in a trimmed sequence, from skeletal
data. Albeit state-of-the-art approaches designed for this application are all
supervised, in this paper we pursue a more challenging direction: Solving the
problem with unsupervised learning. To this end, we propose a novel subspace
clustering method, which exploits covariance matrix to enhance the action's
discriminability and a timestamp pruning approach that allow us to better
handle the temporal dimension of the data. Through a broad experimental
validation, we show that our computational pipeline surpasses existing
unsupervised approaches but also can result in favorable performances as
compared to supervised methods.
- Abstract(参考訳): 本稿では、骨格データから、どのアクションがトリミングシーケンスで表示されるかの分類として定義される人間の行動認識の問題に取り組む。
このアプリケーションのために設計された最先端のアプローチはすべて教師付きですが、この論文ではより難しい方向を追求しています。
そこで本研究では,行動の識別性を高めるために共分散行列を利用する新しいサブスペースクラスタリング法と,データの時間次元をよりよく扱えるタイムスタンプ・プルーニング手法を提案する。
幅広い実験による検証により,計算パイプラインが既存の教師なし手法を上回っており,教師なし手法に比べて良好な性能が得られることを示した。
関連論文リスト
- Exploiting Fine-Grained Prototype Distribution for Boosting Unsupervised Class Incremental Learning [13.17775851211893]
本稿では,教師なしクラスインクリメンタルラーニング(UCIL)の課題について検討する。
この問題に対処することの本質は、包括的特徴表現を効果的に捉え、未知の新しいクラスを発見することである。
本稿では,新しいクラスと既存クラスの重複を最小限に抑え,歴史的知識を保存し,破滅的な忘れの現象を緩和する戦略を提案する。
論文 参考訳(メタデータ) (2024-08-19T14:38:27Z) - Timestamp-supervised Wearable-based Activity Segmentation and
Recognition with Contrastive Learning and Order-Preserving Optimal Transport [11.837401473598288]
本稿では,タイムスタンプによる協調活動のセグメンテーションと認識のための新しい手法を提案する。
プロトタイプはクラスアクティベーションマップによって推定され、サンプル-プロトタイプコントラストモジュールを形成する。
4つの公開HARデータセットに関する総合的な実験により、タイムスタンプの監督で訓練されたモデルが、最先端の弱い教師付き手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-13T14:00:49Z) - Leveraging triplet loss for unsupervised action segmentation [0.0]
本稿では,アクションセグメンテーションタスクに適したアクション表現を,単一入力ビデオ自体から学習する,完全に教師なしのフレームワークを提案する。
本手法は,三重項損失が類似度分布に作用する浅層ネットワークに根ざした深部距離学習手法である。
このような状況下では、既存の教師なしアプローチと比較して、学習された行動表現の時間的境界を高い品質で回復することに成功した。
論文 参考訳(メタデータ) (2023-04-13T11:10:16Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
自己評価学習とサブスペース学習の枠組みを統合することにより,教師なしの特徴選択を提案する。
この手法の収束性は理論的および実験的に証明される。
実験の結果,提案手法はクラスタリング法の性能を向上し,他の比較アルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-14T08:28:19Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Self-supervised Video Object Segmentation [76.83567326586162]
本研究の目的は、半教師付きビデオオブジェクトセグメンテーション(高密度トラッキング)の解決を目的とした自己教師付き表現学習である。
i) 従来の自己教師型アプローチを改善すること、(ii) オンライン適応モジュールによる自己教師型アプローチの強化により、空間的時間的不連続性によるトラッカーのドリフトを緩和すること、(iv) DAVIS-2017とYouTubeの自己教師型アプローチで最先端の結果を示すこと、などが提案されている。
論文 参考訳(メタデータ) (2020-06-22T17:55:59Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
パラメータ化された階層的手順(PHP)で表される制御ポリシーの模倣学習のための変分推論手法を提案する。
本手法は, 教師による実演の観察・行動トレースのデータセットにおける階層構造を, 手続き呼び出しや用語の待ち行列に近似した後続分布を学習することによって発見する。
階層的模倣学習(hierarchical mimicion learning)の文脈における変分推論の新たな利点を実証する。
論文 参考訳(メタデータ) (2019-12-29T08:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。