論文の概要: MCDAL: Maximum Classifier Discrepancy for Active Learning
- arxiv url: http://arxiv.org/abs/2107.11049v1
- Date: Fri, 23 Jul 2021 06:57:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 20:22:53.175083
- Title: MCDAL: Maximum Classifier Discrepancy for Active Learning
- Title(参考訳): MCDAL: アクティブラーニングのための最大分類法
- Authors: Jae Won Cho, Dong-Jin Kim, Yunjae Jung, In So Kweon
- Abstract要約: 近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
- 参考スコア(独自算出の注目度): 74.73133545019877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent state-of-the-art active learning methods have mostly leveraged
Generative Adversarial Networks (GAN) for sample acquisition; however, GAN is
usually known to suffer from instability and sensitivity to hyper-parameters.
In contrast to these methods, we propose in this paper a novel active learning
framework that we call Maximum Classifier Discrepancy for Active Learning
(MCDAL) which takes the prediction discrepancies between multiple classifiers.
In particular, we utilize two auxiliary classification layers that learn
tighter decision boundaries by maximizing the discrepancies among them.
Intuitively, the discrepancies in the auxiliary classification layers'
predictions indicate the uncertainty in the prediction. In this regard, we
propose a novel method to leverage the classifier discrepancies for the
acquisition function for active learning. We also provide an interpretation of
our idea in relation to existing GAN based active learning methods and domain
adaptation frameworks. Moreover, we empirically demonstrate the utility of our
approach where the performance of our approach exceeds the state-of-the-art
methods on several image classification and semantic segmentation datasets in
active learning setups.
- Abstract(参考訳): 最近の最先端アクティブラーニング手法は、ほとんどがgan(generative adversarial network)をサンプル取得に利用しているが、ganは通常、不安定とハイパーパラメータに対する感度に苦しむことが知られている。
これらの手法とは対照的に,本研究では,複数の分類器間での予測の相違を考慮した,MCDAL(Maximum Classifier Discrepancy for Active Learning)と呼ぶ,新たなアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
直観的には、補助分類層の予測の相違は予測の不確実性を示す。
そこで本研究では,能動学習のための獲得関数に対する分類器の相違を利用した新しい手法を提案する。
また、既存のGANベースのアクティブラーニング手法やドメイン適応フレームワークに関連して、私たちのアイデアを解釈する。
さらに,本手法の有効性を実証し,アクティブラーニングにおける画像分類と意味セグメンテーションデータセットの性能が最先端手法を上回っていることを示す。
関連論文リスト
- MALADY: Multiclass Active Learning with Auction Dynamics on Graphs [0.9831489366502301]
効率的なアクティブラーニングのためのマルチクラスアクティブラーニングとオークション・ダイナミクス・オン・グラフ(MALADY)フレームワークを提案する。
我々は[24]における半教師付き学習のための類似性グラフ上のオークションダイナミクスアルゴリズムを一般化し、より一般的な最適化関数を組み込む。
また,オークションアルゴリズムの双対変数を用いて,分類器内の不確実性を測定し,異なるクラス間の決定境界付近のクエリを優先順位付けする,新しい能動的学習獲得関数を導入する。
論文 参考訳(メタデータ) (2024-09-14T16:20:26Z) - Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
本稿では,クラス増分学習シナリオに特化して,ベイズ学習駆動型コントラスト損失(BLCL)を持つプロトタイプネットワークを提案する。
提案手法は,ベイズ学習手法を用いて,クロスエントロピーとコントラスト損失関数のバランスを動的に適用する。
論文 参考訳(メタデータ) (2024-05-17T19:49:02Z) - NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
ニューラル・タンジェント・カーネル・クラスタリング・プシュード・ラベル(NTKCPL)の新しいアクティブ・ラーニング・ストラテジーを提案する。
擬似ラベルとNTK近似を用いたモデル予測に基づいて経験的リスクを推定する。
提案手法を5つのデータセット上で検証し,ほとんどの場合,ベースライン法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-07T01:43:47Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - Consistency-Based Semi-supervised Evidential Active Learning for
Diagnostic Radiograph Classification [2.3545156585418328]
CSEAL(Consistency-based Semi-supervised Evidential Active Learning)フレームワークについて紹介する。
我々は、証拠理論と主観的論理に基づく予測の不確実性を利用して、エンドツーエンドの統合アプローチを開発する。
本手法は, ラベル付きサンプルを少なくして, より稀な異常の精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-09-05T09:28:31Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
クロスモーダル医療画像セグメンテーションのための自己ペースコントラスト学習モデルを保存する新しいマージンを提案する。
プログレッシブに洗練されたセマンティックプロトタイプの指導により、埋め込み表現空間の識別性を高めるために、コントラスト損失を減少させる新しいマージンが提案される。
クロスモーダル心セグメンテーションタスクの実験は、MPSCLが意味セグメンテーション性能を大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-03-15T15:23:10Z) - Spatial Contrastive Learning for Few-Shot Classification [9.66840768820136]
局所的識別性およびクラス非依存性の特徴を学習するための新しい注意に基づく空間コントラスト目標を提案する。
実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-12-26T23:39:41Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
本稿では,新たなエンド・ツー・エンドの知識指向学習フレームワークを提案する。
2つの競合符号化分布を用いてクラス条件付きクラス内不一致を表現し、学習された不一致を識別することで精製された潜伏符号を学習する。
4つのHARベンチマークデータセットに対する実験により,提案手法の頑健性と,最先端の手法による一般化が実証された。
論文 参考訳(メタデータ) (2020-07-14T05:46:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。