Learning of Discrete Graphical Models with Neural Networks
- URL: http://arxiv.org/abs/2006.11937v2
- Date: Wed, 23 Dec 2020 04:16:33 GMT
- Title: Learning of Discrete Graphical Models with Neural Networks
- Authors: Abhijith J., Andrey Y. Lokhov, Sidhant Misra, and Marc Vuffray
- Abstract summary: We introduce NeurISE, a neural net based algorithm for graphical model learning.
NeurISE is seen to be a better alternative to GRISE when the energy function of the true model has a high order.
We also show a variant of NeurISE that can be used to learn a neural net representation for the full energy function of the true model.
- Score: 15.171938155576566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphical models are widely used in science to represent joint probability
distributions with an underlying conditional dependence structure. The inverse
problem of learning a discrete graphical model given i.i.d samples from its
joint distribution can be solved with near-optimal sample complexity using a
convex optimization method known as Generalized Regularized Interaction
Screening Estimator (GRISE). But the computational cost of GRISE becomes
prohibitive when the energy function of the true graphical model has
higher-order terms. We introduce NeurISE, a neural net based algorithm for
graphical model learning, to tackle this limitation of GRISE. We use neural
nets as function approximators in an Interaction Screening objective function.
The optimization of this objective then produces a neural-net representation
for the conditionals of the graphical model. NeurISE algorithm is seen to be a
better alternative to GRISE when the energy function of the true model has a
high order with a high degree of symmetry. In these cases NeurISE is able to
find the correct parsimonious representation for the conditionals without being
fed any prior information about the true model. NeurISE can also be used to
learn the underlying structure of the true model with some simple modifications
to its training procedure. In addition, we also show a variant of NeurISE that
can be used to learn a neural net representation for the full energy function
of the true model.
Related papers
- CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
We propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks.
Our proposed model consists of a graph convolutional network (GCN) encoder and a decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture.
Experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks.
arXiv Detail & Related papers (2021-06-22T12:41:19Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training.
It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods.
Experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types.
arXiv Detail & Related papers (2021-03-12T22:18:34Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
We show that global convergence is statistically intractable even for one-layer neural net bandit with a deterministic reward.
For both nonlinear bandit and RL, the paper presents a model-based algorithm, Virtual Ascent with Online Model Learner (ViOL)
arXiv Detail & Related papers (2021-02-08T12:41:56Z) - Bayesian Neural Ordinary Differential Equations [0.9422623204346027]
We demonstrate the successful integration of Neural ODEs with Bayesian inference frameworks.
We achieve a posterior sample accuracy of 98.5% on the test ensemble of 10,000 images.
This gives a scientific machine learning tool for probabilistic estimation of uncertainties.
arXiv Detail & Related papers (2020-12-14T04:05:26Z) - Stochastic Graph Recurrent Neural Network [6.656993023468793]
We propose SGRNN, a novel neural architecture that applies latent variables to simultaneously capture evolution in node attributes and topology.
Specifically, deterministic states are separated from states in the iterative process to suppress mutual interference.
Experiments on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-09-01T16:14:30Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.