論文の概要: MUMBO: MUlti-task Max-value Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2006.12093v1
- Date: Mon, 22 Jun 2020 09:31:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 04:55:43.340154
- Title: MUMBO: MUlti-task Max-value Bayesian Optimization
- Title(参考訳): mumbo: マルチタスクの最大値ベイズ最適化
- Authors: Henry B. Moss, David S. Leslie and Paul Rayson
- Abstract要約: MUMBOは、マルチタスクベイズ最適化のための、高性能だが計算効率のよい最初の取得関数である。
エントロピー探索のマルチタスク版を考案し,計算オーバーヘッドの少ない堅牢な性能を実現する。
- 参考スコア(独自算出の注目度): 10.10241176664951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose MUMBO, the first high-performing yet computationally efficient
acquisition function for multi-task Bayesian optimization. Here, the challenge
is to perform efficient optimization by evaluating low-cost functions somehow
related to our true target function. This is a broad class of problems
including the popular task of multi-fidelity optimization. However, while
information-theoretic acquisition functions are known to provide
state-of-the-art Bayesian optimization, existing implementations for multi-task
scenarios have prohibitive computational requirements. Previous acquisition
functions have therefore been suitable only for problems with both
low-dimensional parameter spaces and function query costs sufficiently large to
overshadow very significant optimization overheads. In this work, we derive a
novel multi-task version of entropy search, delivering robust performance with
low computational overheads across classic optimization challenges and
multi-task hyper-parameter tuning. MUMBO is scalable and efficient, allowing
multi-task Bayesian optimization to be deployed in problems with rich parameter
and fidelity spaces.
- Abstract(参考訳): MUMBOは,マルチタスクベイズ最適化のための高速かつ計算効率のよい獲得関数である。
ここでの課題は、真の目標関数に何らかの関連のある低コスト機能を評価することで、効率的な最適化を行うことです。
これはマルチフィデリティ最適化の一般的なタスクを含む幅広い問題である。
しかしながら、情報理論的な獲得関数は最先端のベイズ最適化を提供することが知られているが、マルチタスクシナリオの既存の実装は計算の要求を禁じている。
したがって、従来の取得関数は、低次元パラメータ空間と関数クエリコストの両方の問題にのみ適しており、非常に大きな最適化オーバーヘッドを覆すのに十分である。
本研究では,エントロピー探索のマルチタスクバージョンを考案し,従来の最適化課題とマルチタスクハイパーパラメータチューニングにまたがる計算オーバーヘッドの少ない堅牢な性能を実現する。
MUMBOはスケーラブルで効率的であり、マルチタスクベイズ最適化をリッチパラメータと忠実度空間の問題に展開することができる。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z) - Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
本稿では,BOの限界に対処するための新しいベイズ最適化フレームワークを提案する。
我々の重要な貢献は、高度にスケーラブルでサンプルベースの取得機能であり、非支配的な目的のソートを実行する。
我々は,ベイズ型ニューラルネットワークサロゲートと組み合わせることで,最小限の反復数でデータ集約環境に有効であることを示す。
論文 参考訳(メタデータ) (2023-06-01T19:10:57Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
機能的事前設定のための代替的なプラクティスを模索する。
特に、より厳密な分布を事前訓練できるような、類似した関数のデータを持つシナリオを考察する。
提案手法は, 競合する手法の少なくとも3倍の効率で, 優れたハイパーパラメータを見つけることができることを示す。
論文 参考訳(メタデータ) (2022-07-07T04:42:54Z) - Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview [10.081056751778712]
本稿では,多目的ハイパーパラメータ最適化の基礎を導入し,応用MLにおけるその有用性を動機づける。
進化的アルゴリズムの領域とベイズ最適化の両方から、既存の最適化戦略を広範囲に調査する。
動作条件,予測時間,スパースネス,フェアネス,解釈可能性,ロバストネスなどの目的を考慮し,複数の特定のMLアプリケーションにおけるMOOの有用性を解説する。
論文 参考訳(メタデータ) (2022-06-15T10:23:19Z) - Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive
Networks [17.370056935194786]
我々は,Deep Auto-Regressive Networks (BMBO-DARN) を用いたバッチ多重忠実ベイズ最適化を提案する。
ベイズニューラルネットワークの集合を用いて、完全自己回帰モデルを構築します。
我々は,忠実度を検索することなく,単純かつ効率的なバッチクエリ手法を開発した。
論文 参考訳(メタデータ) (2021-06-18T02:55:48Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。