論文の概要: Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview
- arxiv url: http://arxiv.org/abs/2206.07438v3
- Date: Thu, 6 Jun 2024 12:14:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 01:19:21.725440
- Title: Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview
- Title(参考訳): 機械学習における多目的ハイパーパラメータ最適化 - 概要
- Authors: Florian Karl, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan Coors, Martin Binder, Lennart Schneider, Janek Thomas, Jakob Richter, Michel Lang, Eduardo C. Garrido-Merchán, Juergen Branke, Bernd Bischl,
- Abstract要約: 本稿では,多目的ハイパーパラメータ最適化の基礎を導入し,応用MLにおけるその有用性を動機づける。
進化的アルゴリズムの領域とベイズ最適化の両方から、既存の最適化戦略を広範囲に調査する。
動作条件,予測時間,スパースネス,フェアネス,解釈可能性,ロバストネスなどの目的を考慮し,複数の特定のMLアプリケーションにおけるMOOの有用性を解説する。
- 参考スコア(独自算出の注目度): 10.081056751778712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperparameter optimization constitutes a large part of typical modern machine learning workflows. This arises from the fact that machine learning methods and corresponding preprocessing steps often only yield optimal performance when hyperparameters are properly tuned. But in many applications, we are not only interested in optimizing ML pipelines solely for predictive accuracy; additional metrics or constraints must be considered when determining an optimal configuration, resulting in a multi-objective optimization problem. This is often neglected in practice, due to a lack of knowledge and readily available software implementations for multi-objective hyperparameter optimization. In this work, we introduce the reader to the basics of multi-objective hyperparameter optimization and motivate its usefulness in applied ML. Furthermore, we provide an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms and Bayesian optimization. We illustrate the utility of MOO in several specific ML applications, considering objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness.
- Abstract(参考訳): ハイパーパラメータ最適化は、典型的な機械学習ワークフローの大部分を構成する。
これは、機械学習手法とそれに対応する前処理ステップが、ハイパーパラメータが適切に調整されたときにのみ最適なパフォーマンスが得られるという事実から生じる。
しかし、多くのアプリケーションでは、予測精度のためだけにMLパイプラインを最適化することに関心があります。
これは知識が不足し、多目的ハイパーパラメータ最適化のためのソフトウェア実装が容易に手に入るため、実際には無視されることが多い。
本研究では,多目的ハイパーパラメータ最適化の基礎に読者を導入し,応用MLにおけるその有用性を動機づける。
さらに、進化アルゴリズムの領域とベイズ最適化の両方から、既存の最適化戦略を広範囲に調査する。
動作条件,予測時間,スパースネス,フェアネス,解釈可能性,ロバストネスなどの目的を考慮し,複数の特定のMLアプリケーションにおけるMOOの有用性を解説する。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - A Survey on Multi-Objective based Parameter Optimization for Deep
Learning [1.3223682837381137]
深層ニューラルネットワークを用いたパラメータ最適化における多目的最適化手法の有効性について検討する。
これら2つの手法を組み合わせて、複数のアプリケーションにおける予測と分析の生成に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-17T07:48:54Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
本稿では,機械学習モデルにおける任意のハイパーパラメータの任意の集合に対する近似値を求めるためのエージェントベース協調手法を提案する。
提案モデルの動作,特に設計パラメータの変化に対して,機械学習およびグローバル関数最適化アプリケーションの両方で検討する。
論文 参考訳(メタデータ) (2023-03-03T21:10:17Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。