Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors
- URL: http://arxiv.org/abs/2006.12335v3
- Date: Thu, 18 Nov 2021 16:45:35 GMT
- Title: Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors
- Authors: Yuling Yao, Aki Vehtari, Andrew Gelman
- Abstract summary: We propose an approach using parallel runs of MCMC, variational, or mode-based inference to hit as many modes as possible.
We present theoretical consistency with an example where the stacked inference process approximates the true data.
We demonstrate practical implementation in several model families.
- Score: 8.11978827493967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When working with multimodal Bayesian posterior distributions, Markov chain
Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default
variational or mode-based approximate inferences will understate posterior
uncertainty. And, even if the most important modes can be found, it is
difficult to evaluate their relative weights in the posterior. Here we propose
an approach using parallel runs of MCMC, variational, or mode-based inference
to hit as many modes or separated regions as possible and then combine these
using Bayesian stacking, a scalable method for constructing a weighted average
of distributions. The result from stacking efficiently samples from multimodal
posterior distribution, minimizes cross validation prediction error, and
represents the posterior uncertainty better than variational inference, but it
is not necessarily equivalent, even asymptotically, to fully Bayesian
inference. We present theoretical consistency with an example where the stacked
inference approximates the true data generating process from the misspecified
model and a non-mixing sampler, from which the predictive performance is better
than full Bayesian inference, hence the multimodality can be considered a
blessing rather than a curse under model misspecification. We demonstrate
practical implementation in several model families: latent Dirichlet
allocation, Gaussian process regression, hierarchical regression, horseshoe
variable selection, and neural networks.
Related papers
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
We propose a novel approach called DistPred for regression and forecasting tasks.
We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.
This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
arXiv Detail & Related papers (2024-06-17T10:33:00Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
We introduce a novel approach for constructing pseudo-coresets by utilizing contrastive divergence.
It eliminates the need for approximations in the pseudo-coreset construction process.
We conduct extensive experiments on multiple datasets, demonstrating its superiority over existing BPC techniques.
arXiv Detail & Related papers (2023-03-20T17:13:50Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Scaling Bayesian inference of mixed multinomial logit models to very
large datasets [9.442139459221785]
We propose an Amortized Variational Inference approach that leverages backpropagation, automatic differentiation and GPU-accelerated computation.
We show how normalizing flows can be used to increase the flexibility of the variational posterior approximations.
arXiv Detail & Related papers (2020-04-11T15:30:47Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z) - Distributed, partially collapsed MCMC for Bayesian Nonparametrics [68.5279360794418]
We exploit the fact that completely random measures, which commonly used models like the Dirichlet process and the beta-Bernoulli process can be expressed as, are decomposable into independent sub-measures.
We use this decomposition to partition the latent measure into a finite measure containing only instantiated components, and an infinite measure containing all other components.
The resulting hybrid algorithm can be applied to allow scalable inference without sacrificing convergence guarantees.
arXiv Detail & Related papers (2020-01-15T23:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.