DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting
- URL: http://arxiv.org/abs/2406.11397v1
- Date: Mon, 17 Jun 2024 10:33:00 GMT
- Title: DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting
- Authors: Daojun Liang, Haixia Zhang, Dongfeng Yuan,
- Abstract summary: We propose a novel approach called DistPred for regression and forecasting tasks.
We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.
This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
- Score: 14.390842560217743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional regression and prediction tasks often only provide deterministic point estimates. To estimate the uncertainty or distribution information of the response variable, methods such as Bayesian inference, model ensembling, or MC Dropout are typically used. These methods either assume that the posterior distribution of samples follows a Gaussian process or require thousands of forward passes for sample generation. We propose a novel approach called DistPred for regression and forecasting tasks, which overcomes the limitations of existing methods while remaining simple and powerful. Specifically, we transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form and use it as a loss function to train the model end-to-end. This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable. We have compared our method with several existing approaches on multiple datasets and achieved state-of-the-art performance. Additionally, our method significantly improves computational efficiency. For example, compared to state-of-the-art models, DistPred has a 90x faster inference speed. Experimental results can be reproduced through https://github.com/Anoise/DistPred.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Transformer-based Parameter Estimation in Statistics [0.0]
We propose a transformer-based approach to parameter estimation.
It does not even require knowing the probability density function, which is needed by numerical methods.
It is shown that our approach achieves similar or better accuracy as measured by mean-square-errors.
arXiv Detail & Related papers (2024-02-28T04:30:41Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
Implicit generative models have the capability to learn arbitrary complex data distributions.
On the downside, training requires telling apart real data from artificially-generated ones using adversarial discriminators.
We develop a discriminator-free method for training one-dimensional (1D) generative implicit models.
arXiv Detail & Related papers (2024-02-26T09:32:28Z) - On Calibrating Diffusion Probabilistic Models [78.75538484265292]
diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks.
We propose a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can be increased.
Our calibration method is performed only once and the resulting models can be used repeatedly for sampling.
arXiv Detail & Related papers (2023-02-21T14:14:40Z) - Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an
Auxiliary Space [34.83587750498361]
Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses.
Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution.
We propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution.
arXiv Detail & Related papers (2022-07-15T09:03:57Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z) - Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors [8.11978827493967]
We propose an approach using parallel runs of MCMC, variational, or mode-based inference to hit as many modes as possible.
We present theoretical consistency with an example where the stacked inference process approximates the true data.
We demonstrate practical implementation in several model families.
arXiv Detail & Related papers (2020-06-22T15:26:59Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.