Bayesian Pseudo-Coresets via Contrastive Divergence
- URL: http://arxiv.org/abs/2303.11278v2
- Date: Wed, 8 May 2024 19:04:46 GMT
- Title: Bayesian Pseudo-Coresets via Contrastive Divergence
- Authors: Piyush Tiwary, Kumar Shubham, Vivek V. Kashyap, Prathosh A. P,
- Abstract summary: We introduce a novel approach for constructing pseudo-coresets by utilizing contrastive divergence.
It eliminates the need for approximations in the pseudo-coreset construction process.
We conduct extensive experiments on multiple datasets, demonstrating its superiority over existing BPC techniques.
- Score: 5.479797073162603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian methods provide an elegant framework for estimating parameter posteriors and quantification of uncertainty associated with probabilistic models. However, they often suffer from slow inference times. To address this challenge, Bayesian Pseudo-Coresets (BPC) have emerged as a promising solution. BPC methods aim to create a small synthetic dataset, known as pseudo-coresets, that approximates the posterior inference achieved with the original dataset. This approximation is achieved by optimizing a divergence measure between the true posterior and the pseudo-coreset posterior. Various divergence measures have been proposed for constructing pseudo-coresets, with forward Kullback-Leibler (KL) divergence being the most successful. However, using forward KL divergence necessitates sampling from the pseudo-coreset posterior, often accomplished through approximate Gaussian variational distributions. Alternatively, one could employ Markov Chain Monte Carlo (MCMC) methods for sampling, but this becomes challenging in high-dimensional parameter spaces due to slow mixing. In this study, we introduce a novel approach for constructing pseudo-coresets by utilizing contrastive divergence. Importantly, optimizing contrastive divergence eliminates the need for approximations in the pseudo-coreset construction process. Furthermore, it enables the use of finite-step MCMC methods, alleviating the requirement for extensive mixing to reach a stationary distribution. To validate our method's effectiveness, we conduct extensive experiments on multiple datasets, demonstrating its superiority over existing BPC techniques.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - On Divergence Measures for Bayesian Pseudocoresets [28.840995981326028]
A Bayesian pseudocoreset is a small synthetic dataset for which the posterior over parameters approximates that of the original dataset.
This paper casts two representative dataset distillation algorithms as approximations to methods for constructing pseudocoresets.
We provide a unifying view of such divergence measures in Bayesian pseudocoreset construction.
arXiv Detail & Related papers (2022-10-12T13:45:36Z) - The split Gibbs sampler revisited: improvements to its algorithmic
structure and augmented target distribution [1.1279808969568252]
Current state-of-the-art methods often address these difficulties by replacing the posterior density with a smooth approximation.
An alternative approach is based on data augmentation and relaxation, where auxiliary variables are introduced in order to construct an approximate augmented posterior distribution.
This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK, which tightly combines the benefits of the two strategies.
arXiv Detail & Related papers (2022-06-28T11:21:41Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
We develop a novel model-based approach to reinforcement learning (MBRL)
It relaxes the assumptions on the target transition model to belong to a generic family of mixture models.
It can achieve up-to 50 percent reduction in wall clock time in some continuous control environments.
arXiv Detail & Related papers (2022-06-02T17:27:49Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors [8.11978827493967]
We propose an approach using parallel runs of MCMC, variational, or mode-based inference to hit as many modes as possible.
We present theoretical consistency with an example where the stacked inference process approximates the true data.
We demonstrate practical implementation in several model families.
arXiv Detail & Related papers (2020-06-22T15:26:59Z) - Scaling Bayesian inference of mixed multinomial logit models to very
large datasets [9.442139459221785]
We propose an Amortized Variational Inference approach that leverages backpropagation, automatic differentiation and GPU-accelerated computation.
We show how normalizing flows can be used to increase the flexibility of the variational posterior approximations.
arXiv Detail & Related papers (2020-04-11T15:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.