Metaheuristics for the Online Printing Shop Scheduling Problem
- URL: http://arxiv.org/abs/2006.12344v2
- Date: Sun, 20 Feb 2022 10:34:52 GMT
- Title: Metaheuristics for the Online Printing Shop Scheduling Problem
- Authors: Willian T. Lunardi, Ernesto G. Birgin, D\'ebora P. Ronconi, Holger
Voos
- Abstract summary: This real scheduling problem, that emerged in the nowadays printing industry, corresponds to a flexible job shop scheduling problem with sequencing flexibility.
A local search strategy and metaheuristic approaches for the problem are proposed and evaluated.
Numerical experiments with classical instances of the flexible job shop scheduling problem show that the introduced methods are also competitive when applied to this particular case.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, the online printing shop scheduling problem introduced in
(Lunardi et al., Mixed Integer Linear Programming and Constraint Programming
Models for the Online Printing Shop Scheduling Problem, Computers & Operations
Research, to appear) is considered. This challenging real scheduling problem,
that emerged in the nowadays printing industry, corresponds to a flexible job
shop scheduling problem with sequencing flexibility; and it presents several
complicating specificities such as resumable operations, periods of
unavailability of the machines, sequence-dependent setup times, partial
overlapping between operations with precedence constraints, and fixed
operations, among others. A local search strategy and metaheuristic approaches
for the problem are proposed and evaluated. Based on a common representation
scheme, trajectory and populational metaheuristics are considered. Extensive
numerical experiments with large-sized instances show that the proposed methods
are suitable for solving practical instances of the problem; and that they
outperform a half-heuristic-half-exact off-the-shelf solver by a large extent.
Numerical experiments with classical instances of the flexible job shop
scheduling problem show that the introduced methods are also competitive when
applied to this particular case.
Related papers
- Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist
Scheduling Problems [11.66506213335498]
Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices.
We formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL.
We provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem.
arXiv Detail & Related papers (2022-12-11T05:30:44Z) - Solving workflow scheduling problems with QUBO modeling [0.0]
We develop a novel QUBO to represent our scheduling problem and show how the QUBO depends complexity on the input problem.
We derive and present a decomposition method for this specific application to mitigate this complexity.
arXiv Detail & Related papers (2022-05-10T12:38:17Z) - A heuristic method for data allocation and task scheduling on
heterogeneous multiprocessor systems under memory constraints [14.681986126866452]
This paper focuses on the data allocation and task scheduling problem under memory constraints.
We propose a tabu search algorithm (TS) which combines several distinguished features.
Experimental results show that the the proposed TS algorithm can obtain relatively high-quality solutions in a reasonable computational time.
arXiv Detail & Related papers (2022-05-09T10:46:08Z) - Concepts and Algorithms for Agent-based Decentralized and Integrated
Scheduling of Production and Auxiliary Processes [78.120734120667]
This paper describes an agent-based decentralized and integrated scheduling approach.
Part of the requirements is to develop a linearly scaling communication architecture.
The approach is explained using an example based on industrial requirements.
arXiv Detail & Related papers (2022-05-06T18:44:29Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Solving a Multi-resource Partial-ordering Flexible Variant of the
Job-shop Scheduling Problem with Hybrid ASP [0.4511923587827302]
We consider a Multi-resource Partial-ordering Flexible Job-shop Scheduling (MPF-JSS) problem.
The resources are flexible and can perform one or more operations depending on their properties.
Experiments conducted on a set of instances extracted from a medium-sized semiconductor fault analysis lab indicate that our approach can find schedules for 87 out of 91 considered real-world instances.
arXiv Detail & Related papers (2021-01-25T15:21:32Z) - Learning to solve the single machine scheduling problem with release
times and sum of completion times [0.76146285961466]
We focus on the solution of a hard single machine scheduling problem by new algorithms embedding techniques from machine learning field and scheduling theory.
Theses transform an instance of the hard problem into an instance of a simpler one solved to optimality.
arXiv Detail & Related papers (2021-01-04T16:40:18Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.