論文の概要: End-to-end deep metamodeling to calibrate and optimize energy loads
- arxiv url: http://arxiv.org/abs/2006.12390v1
- Date: Fri, 19 Jun 2020 07:40:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 04:32:19.196712
- Title: End-to-end deep metamodeling to calibrate and optimize energy loads
- Title(参考訳): エネルギー負荷のキャリブレーションと最適化のためのエンドツーエンドの深部メタモデリング
- Authors: Max Cohen (TSP, IP Paris, SAMOVAR), Maurice Charbit (LTCI), Sylvain Le
Corff (TSP, IP Paris, SAMOVAR), Marius Preda (TSP, IP Paris, SAMOVAR), Gilles
Nozi\`ere
- Abstract要約: 本研究では,大規模建物のエネルギー性能と快適性,空気質,衛生性を最適化する新しいエンド・ツー・エンド手法を提案する。
シミュレーションプログラムでサンプル化したデータセットを用いてトランスフォーマーネットワークに基づくメタモデルを導入,訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new end-to-end methodology to optimize the energy
performance and the comfort, air quality and hygiene of large buildings. A
metamodel based on a Transformer network is introduced and trained using a
dataset sampled with a simulation program. Then, a few physical parameters and
the building management system settings of this metamodel are calibrated using
the CMA-ES optimization algorithm and real data obtained from sensors. Finally,
the optimal settings to minimize the energy loads while maintaining a target
thermal comfort and air quality are obtained using a multi-objective
optimization procedure. The numerical experiments illustrate how this metamodel
ensures a significant gain in energy efficiency while being computationally
much more appealing than models requiring a huge number of physical parameters
to be estimated.
- Abstract(参考訳): 本稿では,大規模建物のエネルギー性能と快適性,空気質,衛生性を最適化するエンド・ツー・エンド手法を提案する。
シミュレーションプログラムでサンプル化したデータセットを用いてトランスフォーマーネットワークに基づくメタモデルを導入,訓練する。
次に、CMA-ES最適化アルゴリズムとセンサから得られた実データを用いて、いくつかの物理パラメータと、このメタモデルの構築管理システム設定を校正する。
最後に、多目的最適化手法を用いて、目標温度の快適性と空気品質を維持しながらエネルギー負荷を最小化するための最適設定を求める。
数値実験は、このメタモデルがエネルギー効率の大幅な向上を保証し、膨大な物理パラメータを推定しなければならないモデルよりも計算的に魅力的であることを示す。
関連論文リスト
- Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators [5.483662156126757]
本稿では,物理に基づく力学モデルをモデル予測制御に繰り返し適用する,非包括的操作のための新しいアプローチを提案する。
ロボットとオブジェクトの相互作用の例として,モデルのパラメータを漸進的に適用する。
シミュレーションおよび実ロボットを用いたいくつかの物体押出実験において,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-09-20T05:24:25Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
本研究の目的は,画像分類データセットと事前学習モデルの解析,最適化モデルと非最適化モデルを比較して推論効率を向上させること,最適化の経済的影響を評価することである。
画像分類におけるPyTorch最適化手法(動的量子化、トーチ・コンパイル、局所プルーニング、グローバルプルーニング)と42のHugging Faceモデルの影響を評価するための制御実験を行った。
動的量子化は推論時間とエネルギー消費の大幅な削減を示し、大規模システムに非常に適している。
論文 参考訳(メタデータ) (2024-09-19T16:23:03Z) - Automated Computational Energy Minimization of ML Algorithms using Constrained Bayesian Optimization [1.2891210250935148]
我々は,エネルギー消費を最小化する目的で,制約付きベイズ最適化(CBO)を評価した。
我々は,MLモデルの予測性能を損なうことなく,CBOによる省エネ効果を実証した。
論文 参考訳(メタデータ) (2024-07-08T09:49:38Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - End-to-end deep meta modelling to calibrate and optimize energy
consumption and comfort [0.0]
本稿では,リカレントニューラルネットワークに基づくメタモデルを導入し,一般の建物の挙動を予測する訓練を行う。
メタモデルの予測とセンサから得られた実データを比較することでパラメータを推定する。
エネルギー消費は、目標の熱の快適さと空気の質を維持しながら最適化されている。
論文 参考訳(メタデータ) (2021-02-01T10:21:09Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Sample-Efficient Optimization in the Latent Space of Deep Generative
Models via Weighted Retraining [1.5293427903448025]
深部生成モデルから学習した低次元連続潜伏多様体の最適化を行う,効率的なブラックボックス最適化のための改良手法を提案する。
最適化軌道に沿ってクエリされたデータポイントの生成モデルを定期的に再学習し、目的関数値に応じてこれらのデータポイントを重み付けすることで、これを実現する。
この重み付けされたリトレーニングは既存の手法で容易に実装でき、合成および実世界の最適化問題において、その効率と性能を著しく向上することが実証的に示されている。
論文 参考訳(メタデータ) (2020-06-16T14:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。