論文の概要: Sample-Efficient Optimization in the Latent Space of Deep Generative
Models via Weighted Retraining
- arxiv url: http://arxiv.org/abs/2006.09191v2
- Date: Sun, 25 Oct 2020 23:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:26:48.110239
- Title: Sample-Efficient Optimization in the Latent Space of Deep Generative
Models via Weighted Retraining
- Title(参考訳): 重み付き再訓練による深部生成モデルの潜在空間におけるサンプル効率の最適化
- Authors: Austin Tripp, Erik Daxberger, Jos\'e Miguel Hern\'andez-Lobato
- Abstract要約: 深部生成モデルから学習した低次元連続潜伏多様体の最適化を行う,効率的なブラックボックス最適化のための改良手法を提案する。
最適化軌道に沿ってクエリされたデータポイントの生成モデルを定期的に再学習し、目的関数値に応じてこれらのデータポイントを重み付けすることで、これを実現する。
この重み付けされたリトレーニングは既存の手法で容易に実装でき、合成および実世界の最適化問題において、その効率と性能を著しく向上することが実証的に示されている。
- 参考スコア(独自算出の注目度): 1.5293427903448025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many important problems in science and engineering, such as drug design,
involve optimizing an expensive black-box objective function over a complex,
high-dimensional, and structured input space. Although machine learning
techniques have shown promise in solving such problems, existing approaches
substantially lack sample efficiency. We introduce an improved method for
efficient black-box optimization, which performs the optimization in the
low-dimensional, continuous latent manifold learned by a deep generative model.
In contrast to previous approaches, we actively steer the generative model to
maintain a latent manifold that is highly useful for efficiently optimizing the
objective. We achieve this by periodically retraining the generative model on
the data points queried along the optimization trajectory, as well as weighting
those data points according to their objective function value. This weighted
retraining can be easily implemented on top of existing methods, and is
empirically shown to significantly improve their efficiency and performance on
synthetic and real-world optimization problems.
- Abstract(参考訳): 薬物設計のような科学と工学の重要な問題の多くは、複雑で高次元で構造化された入力空間上で高価なブラックボックス目的関数を最適化することである。
機械学習技術はそのような問題を解決する上で有望であるが、既存のアプローチではサンプル効率がほとんどない。
深部生成モデルから学習した低次元連続潜伏多様体の最適化を行う,効率的なブラックボックス最適化のための改良手法を提案する。
従来のアプローチとは対照的に,目標を効率的に最適化するのに非常に有用な潜在多様体を維持するために,生成モデルを積極的に制御する。
最適化軌道に沿ってクエリされたデータポイントの生成モデルを定期的に再学習し、目的関数値に応じてこれらのデータポイントを重み付けすることでこれを実現できる。
この重み付き再訓練は、既存の手法上で容易に実装でき、合成および実世界の最適化問題における効率と性能を大幅に改善することが実証的に示されている。
関連論文リスト
- Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
本稿では、オフラインデータ例の集合を除いて目的関数が不明なオフライン最適化の問題について考察する。
未知の目的関数を学習して最適化するのではなく、より直感的で直接的な視点で、最適化は生成モデルからサンプリングするプロセスと考えることができる。
論文 参考訳(メタデータ) (2024-01-04T01:32:50Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
本稿では,拡散モデルのサンプリング軌跡と従来の物理法に基づく最適化軌跡との整合性を示す学習フレームワークを提案する。
提案手法では,高コストプリプロセッシングや外部サロゲートモデル,ラベル付きデータの追加を必要とせずに,実用的で高性能な設計を2段階で生成することができる。
この結果から, TAは分布内構成における最先端の深層生成モデルより優れ, 推論計算コストを半減することがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:16:07Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models [40.497123136157946]
変数の重複部分集合を持つ低次元関数を合成して高次元目標関数をモデル化する一般化加法モデルを検討する。
私たちの目標は、必要な計算リソースを減らし、より高速なモデル学習を促進することです。
我々は,合成関数と実世界のデータセットに関する様々な実験を通して,本手法の有効性を実証し,議論する。
論文 参考訳(メタデータ) (2020-12-24T03:56:44Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。