Attention-based Quantum Tomography
- URL: http://arxiv.org/abs/2006.12469v3
- Date: Wed, 3 Nov 2021 23:33:16 GMT
- Title: Attention-based Quantum Tomography
- Authors: Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L.
McMahon, Eun-Ah Kim
- Abstract summary: "Attention-based Quantum Tomography" is a quantum state reconstruction using an attention mechanism-based generative network.
We show AQT can accurately reconstruct the density matrix associated with a noisy quantum state experimentally realized in an IBMQ quantum computer.
- Score: 9.818293236208413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With rapid progress across platforms for quantum systems, the problem of
many-body quantum state reconstruction for noisy quantum states becomes an
important challenge. Recent works found promise in recasting the problem of
quantum state reconstruction to learning the probability distribution of
quantum state measurement vectors using generative neural network models. Here
we propose the "Attention-based Quantum Tomography" (AQT), a quantum state
reconstruction using an attention mechanism-based generative network that
learns the mixed state density matrix of a noisy quantum state. The AQT is
based on the model proposed in "Attention is all you need" by Vishwani et al
(2017) that is designed to learn long-range correlations in natural language
sentences and thereby outperform previous natural language processing models.
We demonstrate not only that AQT outperforms earlier neural-network-based
quantum state reconstruction on identical tasks but that AQT can accurately
reconstruct the density matrix associated with a noisy quantum state
experimentally realized in an IBMQ quantum computer. We speculate the success
of the AQT stems from its ability to model quantum entanglement across the
entire quantum system much as the attention model for natural language
processing captures the correlations among words in a sentence.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Tomography of Quantum States from Structured Measurements via
quantum-aware transformer [12.506858276895915]
We study the structure of quantum measurements for characterizing a quantum state.
We design a quantum-aware transformer (QAT) model to capture the complex relationship between measured frequencies and density matrices.
In particular, we query quantum operators in the architecture to facilitate informative representations of quantum data.
arXiv Detail & Related papers (2023-05-09T13:22:13Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Reconstructing Quantum States Using Basis-Enhanced Born Machines [0.0]
We show that a Born machine can reconstruct pure quantum states using projective measurements from only two Pauli measurement bases.
We implement the basis-enhanced Born machine to learn the ground states across the phase diagram of a 1D chain of Rydberg atoms.
The model accurately predicts quantum correlations and different observables, and system sizes as large as 37 qubits are considered.
arXiv Detail & Related papers (2022-06-02T19:52:38Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
arXiv Detail & Related papers (2022-05-11T16:50:46Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
We realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological phases of a spin model characterized by a non-zero string order parameter.
We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
arXiv Detail & Related papers (2021-09-13T12:32:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
We introduce a quantum state tomography platform based on the framework of reservoir computing.
It forms a quantum neural network, and operates as a comprehensive device for reconstructing an arbitrary quantum state.
arXiv Detail & Related papers (2020-08-14T14:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.