Quantum Self-Attention Neural Networks for Text Classification
- URL: http://arxiv.org/abs/2205.05625v2
- Date: Thu, 28 Sep 2023 00:04:13 GMT
- Title: Quantum Self-Attention Neural Networks for Text Classification
- Authors: Guangxi Li, Xuanqiang Zhao, Xin Wang
- Abstract summary: We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
- Score: 8.975913540662441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An emerging direction of quantum computing is to establish meaningful quantum
applications in various fields of artificial intelligence, including natural
language processing (NLP). Although some efforts based on syntactic analysis
have opened the door to research in Quantum NLP (QNLP), limitations such as
heavy syntactic preprocessing and syntax-dependent network architecture make
them impracticable on larger and real-world data sets. In this paper, we
propose a new simple network architecture, called the quantum self-attention
neural network (QSANN), which can compensate for these limitations.
Specifically, we introduce the self-attention mechanism into quantum neural
networks and then utilize a Gaussian projected quantum self-attention serving
as a sensible quantum version of self-attention. As a result, QSANN is
effective and scalable on larger data sets and has the desirable property of
being implementable on near-term quantum devices. In particular, our QSANN
outperforms the best existing QNLP model based on syntactic analysis as well as
a simple classical self-attention neural network in numerical experiments of
text classification tasks on public data sets. We further show that our method
exhibits robustness to low-level quantum noises and showcases resilience to
quantum neural network architectures.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
Quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning.
This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics.
arXiv Detail & Related papers (2024-09-04T08:49:57Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Multi-Scale Feature Fusion Quantum Depthwise Convolutional Neural Networks for Text Classification [3.0079490585515343]
We propose a novel quantum neural network (QNN) model based on quantum convolution.
We develop the quantum depthwise convolution that significantly reduces the number of parameters and lowers computational complexity.
We also introduce the multi-scale feature fusion mechanism to enhance model performance by integrating word-level and sentence-level features.
arXiv Detail & Related papers (2024-05-22T10:19:34Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms.
QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain.
Our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.
arXiv Detail & Related papers (2024-03-05T11:29:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.