Towards Contrastive Explanations for Comparing the Ethics of Plans
- URL: http://arxiv.org/abs/2006.12632v1
- Date: Mon, 22 Jun 2020 21:38:16 GMT
- Title: Towards Contrastive Explanations for Comparing the Ethics of Plans
- Authors: Benjamin Krarup, Senka Krivic, Felix Lindner, Derek Long
- Abstract summary: We present how contrastive explanations can be used for comparing the ethics of plans.
We build upon an existing ethical framework to allow users to make suggestions to plans and receive contrastive explanations.
- Score: 4.393037165265444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of robotics and AI agents has enabled their wider usage in
human surroundings. AI agents are more trusted to make increasingly important
decisions with potentially critical outcomes. It is essential to consider the
ethical consequences of the decisions made by these systems. In this paper, we
present how contrastive explanations can be used for comparing the ethics of
plans. We build upon an existing ethical framework to allow users to make
suggestions to plans and receive contrastive explanations.
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
We argue that this is a significant way to bring ethical considerations into mathematical reasoning.
We demonstrate these ideas within the context of competing models used to advise the UK government on the spread of the Omicron variant of COVID-19 during December 2021.
arXiv Detail & Related papers (2023-09-11T15:13:36Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - Context, Utility and Influence of an Explanation [0.0]
Contextual utility theory integrates context-sensitive factors into utility-based decision-making models.
It stresses the importance of understanding individual decision-makers' preferences, values, and beliefs.
It can improve transparency and understanding of how AI systems affect decision-making.
arXiv Detail & Related papers (2023-03-22T11:30:48Z) - Understanding a Robot's Guiding Ethical Principles via Automatically
Generated Explanations [4.393037165265444]
We build upon an existing ethical framework to allow users to make suggestions about plans and receive automatically generated contrastive explanations.
Results of a user study indicate that the generated explanations help humans to understand the ethical principles that underlie a robot's plan.
arXiv Detail & Related papers (2022-06-20T22:55:00Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Descriptive AI Ethics: Collecting and Understanding the Public Opinion [10.26464021472619]
This work proposes a mixed AI ethics model that allows normative and descriptive research to complement each other.
We discuss its implications on bridging the gap between optimistic and pessimistic views towards AI systems' deployment.
arXiv Detail & Related papers (2021-01-15T03:46:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.