Descriptive AI Ethics: Collecting and Understanding the Public Opinion
- URL: http://arxiv.org/abs/2101.05957v1
- Date: Fri, 15 Jan 2021 03:46:27 GMT
- Title: Descriptive AI Ethics: Collecting and Understanding the Public Opinion
- Authors: Gabriel Lima, Meeyoung Cha
- Abstract summary: This work proposes a mixed AI ethics model that allows normative and descriptive research to complement each other.
We discuss its implications on bridging the gap between optimistic and pessimistic views towards AI systems' deployment.
- Score: 10.26464021472619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a growing need for data-driven research efforts on how the public
perceives the ethical, moral, and legal issues of autonomous AI systems. The
current debate on the responsibility gap posed by these systems is one such
example. This work proposes a mixed AI ethics model that allows normative and
descriptive research to complement each other, by aiding scholarly discussion
with data gathered from the public. We discuss its implications on bridging the
gap between optimistic and pessimistic views towards AI systems' deployment.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
We argue that this is a significant way to bring ethical considerations into mathematical reasoning.
We demonstrate these ideas within the context of competing models used to advise the UK government on the spread of the Omicron variant of COVID-19 during December 2021.
arXiv Detail & Related papers (2023-09-11T15:13:36Z) - Ethics in AI through the Practitioner's View: A Grounded Theory
Literature Review [12.941478155592502]
In recent years, numerous incidents have raised the profile of ethical issues in AI development and led to public concerns about the proliferation of AI technology in our everyday lives.
We conducted a grounded theory literature review (GTLR) of 38 primary empirical studies that included AI practitioners' views on ethics in AI.
We present a taxonomy of ethics in AI from practitioners' viewpoints to assist AI practitioners in identifying and understanding the different aspects of AI ethics.
arXiv Detail & Related papers (2022-06-20T00:28:51Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Ethics of AI: A Systematic Literature Review of Principles and
Challenges [3.7129018407842445]
Transparency, privacy, accountability and fairness are identified as the most common AI ethics principles.
Lack of ethical knowledge and vague principles are reported as the significant challenges for considering ethics in AI.
arXiv Detail & Related papers (2021-09-12T15:33:43Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.