Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
- URL: http://arxiv.org/abs/2504.13785v1
- Date: Fri, 18 Apr 2025 16:35:12 GMT
- Title: Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
- Authors: Steffen Hagedorn, Aron Distelzweig, Marcel Hallgarten, Alexandru P. Condurache,
- Abstract summary: In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle.<n>Existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information.<n>We propose a novel retrospection technique to correct its errors during inference and will repeat them.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
Related papers
- Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.<n>Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
arXiv Detail & Related papers (2024-09-17T13:26:17Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Improving Trajectory Prediction in Dynamic Multi-Agent Environment by
Dropping Waypoints [9.385936248154987]
Motion prediction systems must learn spatial and temporal information from the past to forecast the future trajectories of the agent.
We propose Temporal Waypoint Dropping (TWD) that explicitly incorporates temporal dependencies during the training of a trajectory prediction model.
We evaluate our proposed approach on three datasets: NBA Sports VU, ETH-UCY, and TrajNet++.
arXiv Detail & Related papers (2023-09-29T15:48:35Z) - EANet: Expert Attention Network for Online Trajectory Prediction [5.600280639034753]
Expert Attention Network is a complete online learning framework for trajectory prediction.
We introduce expert attention, which adjusts the weights of different depths of network layers, avoiding the model updated slowly due to gradient problem.
Furthermore, we propose a short-term motion trend kernel function which is sensitive to scenario change, allowing the model to respond quickly.
arXiv Detail & Related papers (2023-09-11T07:09:40Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron [5.267336573374459]
We propose a longer-term (510 seconds) lane change prediction model without any lateral or angle information.
Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model.
Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.
arXiv Detail & Related papers (2020-06-23T05:32:40Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.