Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network
- URL: http://arxiv.org/abs/2006.12906v2
- Date: Sun, 12 Jul 2020 23:33:28 GMT
- Title: Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network
- Authors: Stuart Eiffert, Kunming Li, Mao Shan, Stewart Worrall, Salah Sukkarieh
and Eduardo Nebot
- Abstract summary: We show how Probabilistic Crowd GAN can output probabilistic multimodal predictions.
We also propose the use of Graph Vehicle-Pedestrian Attention Network (GVAT), which models social interactions.
We demonstrate improvements on the existing state of the art methods for trajectory prediction and illustrate how the true multimodal and uncertain nature of crowd interactions can be directly modelled.
- Score: 12.070251470948772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and predicting the intention of pedestrians is essential to
enable autonomous vehicles and mobile robots to navigate crowds. This problem
becomes increasingly complex when we consider the uncertainty and multimodality
of pedestrian motion, as well as the implicit interactions between members of a
crowd, including any response to a vehicle. Our approach, Probabilistic Crowd
GAN, extends recent work in trajectory prediction, combining Recurrent Neural
Networks (RNNs) with Mixture Density Networks (MDNs) to output probabilistic
multimodal predictions, from which likely modal paths are found and used for
adversarial training. We also propose the use of Graph Vehicle-Pedestrian
Attention Network (GVAT), which models social interactions and allows input of
a shared vehicle feature, showing that inclusion of this module leads to
improved trajectory prediction both with and without the presence of a vehicle.
Through evaluation on various datasets, we demonstrate improvements on the
existing state of the art methods for trajectory prediction and illustrate how
the true multimodal and uncertain nature of crowd interactions can be directly
modelled.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Attention-aware Social Graph Transformer Networks for Stochastic Trajectory Prediction [16.55909815712467]
Trajectory prediction is fundamental to various intelligent technologies, such as autonomous driving and robotics.
Current trajectory prediction research faces problems of complex social interactions, high dynamics and multi-modality.
We propose Attention-aware Social Graph Transformer Networks for multi-modal trajectory prediction.
arXiv Detail & Related papers (2023-12-26T04:24:01Z) - Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory
Prediction using Diffusion Graph Convolutional Networks [17.989423104706397]
This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction framework.
Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix.
We employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings.
arXiv Detail & Related papers (2023-09-05T06:28:13Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph
Convolutional Neural Networks and Multi-Head Self-Attention [10.83642398981694]
CRAT-Pred is a trajectory prediction model that does not rely on map information.
The model achieves state-of-the-art performance with a significantly lower number of model parameters.
In addition to that, we quantitatively show that the self-attention mechanism is able to learn social interactions between vehicles, with the weights representing a measurable interaction score.
arXiv Detail & Related papers (2022-02-09T14:36:36Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.