CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph
Convolutional Neural Networks and Multi-Head Self-Attention
- URL: http://arxiv.org/abs/2202.04488v2
- Date: Thu, 10 Feb 2022 06:57:54 GMT
- Title: CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph
Convolutional Neural Networks and Multi-Head Self-Attention
- Authors: Julian Schmidt, Julian Jordan, Franz Gritschneder, Klaus Dietmayer
- Abstract summary: CRAT-Pred is a trajectory prediction model that does not rely on map information.
The model achieves state-of-the-art performance with a significantly lower number of model parameters.
In addition to that, we quantitatively show that the self-attention mechanism is able to learn social interactions between vehicles, with the weights representing a measurable interaction score.
- Score: 10.83642398981694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the motion of surrounding vehicles is essential for autonomous
vehicles, as it governs their own motion plan. Current state-of-the-art vehicle
prediction models heavily rely on map information. In reality, however, this
information is not always available. We therefore propose CRAT-Pred, a
multi-modal and non-rasterization-based trajectory prediction model,
specifically designed to effectively model social interactions between
vehicles, without relying on map information. CRAT-Pred applies a graph
convolution method originating from the field of material science to vehicle
prediction, allowing to efficiently leverage edge features, and combines it
with multi-head self-attention. Compared to other map-free approaches, the
model achieves state-of-the-art performance with a significantly lower number
of model parameters. In addition to that, we quantitatively show that the
self-attention mechanism is able to learn social interactions between vehicles,
with the weights representing a measurable interaction score. The source code
is publicly available.
Related papers
- MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving [15.965681867350215]
This paper introduces a trajectory prediction model tailored for autonomous driving.
It harnesses historical trajectory data combined with a novel geometric dynamic graph-based behavior-aware module.
It achieves computational efficiency and reduced parameter overhead.
arXiv Detail & Related papers (2024-05-02T13:13:52Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - TOFG: A Unified and Fine-Grained Environment Representation in
Autonomous Driving [7.787762537147956]
In autonomous driving, an accurate understanding of environment plays a critical role in many driving tasks such as trajectory prediction and motion planning.
Many data-driven models for trajectory prediction and motion planning extract vehicle-to-vehicle and vehicle-to-lane interactions in a separate and sequential manner.
We propose an environment representation, Temporal Occupancy Flow Graph (TOFG), which unifies the map information and vehicle trajectories into a homogeneous data format.
arXiv Detail & Related papers (2023-05-31T17:43:56Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation.
We propose a framework that decouples occupancy prediction into: representation learning and prediction within the learned latent space.
arXiv Detail & Related papers (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset [84.3946567650148]
With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways.
We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent.
We introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models.
arXiv Detail & Related papers (2021-04-20T17:19:05Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction
using a Graph Vehicle-Pedestrian Attention Network [12.070251470948772]
We show how Probabilistic Crowd GAN can output probabilistic multimodal predictions.
We also propose the use of Graph Vehicle-Pedestrian Attention Network (GVAT), which models social interactions.
We demonstrate improvements on the existing state of the art methods for trajectory prediction and illustrate how the true multimodal and uncertain nature of crowd interactions can be directly modelled.
arXiv Detail & Related papers (2020-06-23T11:25:16Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.