論文の概要: Optimizing Interactive Systems via Data-Driven Objectives
- arxiv url: http://arxiv.org/abs/2006.12999v1
- Date: Fri, 19 Jun 2020 20:49:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 05:09:41.020247
- Title: Optimizing Interactive Systems via Data-Driven Objectives
- Title(参考訳): データ駆動目標によるインタラクティブシステムの最適化
- Authors: Ziming Li, Julia Kiseleva, Alekh Agarwal, Maarten de Rijke, Ryen W.
White
- Abstract要約: 本稿では,観察されたユーザインタラクションから直接目的を推測する手法を提案する。
これらの推論は、事前の知識によらず、様々な種類のユーザー行動にまたがって行われる。
本稿では,これらの推定対象を最適化するために利用する新しいアルゴリズムであるInteractive System(ISO)を紹介する。
- 参考スコア(独自算出の注目度): 70.3578528542663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective optimization is essential for real-world interactive systems to
provide a satisfactory user experience in response to changing user behavior.
However, it is often challenging to find an objective to optimize for
interactive systems (e.g., policy learning in task-oriented dialog systems).
Generally, such objectives are manually crafted and rarely capture complex user
needs in an accurate manner. We propose an approach that infers the objective
directly from observed user interactions. These inferences can be made
regardless of prior knowledge and across different types of user behavior. We
introduce Interactive System Optimizer (ISO), a novel algorithm that uses these
inferred objectives for optimization. Our main contribution is a new general
principled approach to optimizing interactive systems using data-driven
objectives. We demonstrate the high effectiveness of ISO over several
simulations.
- Abstract(参考訳): 実世界の対話システムにとって効果的な最適化は、ユーザの振る舞いの変化に応じて満足なユーザエクスペリエンスを提供するために不可欠である。
しかし、対話型システム(例えばタスク指向対話システムにおけるポリシー学習)に最適化する目的を見つけることはしばしば困難である。
一般的にこのような目標は手作業で作成され、複雑なユーザニーズを正確に捉えることは滅多にない。
我々は,観察したユーザインタラクションから直接目的を推測する手法を提案する。
これらの推論は、事前の知識や異なる種類のユーザー行動によらず行われる。
本稿では,これらの推定対象を最適化に利用する新しいアルゴリズムであるInteractive System Optimizer (ISO)を紹介する。
当社の主な貢献は,データ駆動目的を用いたインタラクティブシステムの最適化に関する,新たな一般原則に基づくアプローチです。
いくつかのシミュレーションでISOの有効性を示す。
関連論文リスト
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
複数の目的を同時に最適化することは、レコメンデーションプラットフォームにとって重要なタスクです。
既存の多目的推薦システムは、そのような動的な関係を体系的に考慮していない。
論文 参考訳(メタデータ) (2024-07-04T02:19:49Z) - Reliable LLM-based User Simulator for Task-Oriented Dialogue Systems [2.788542465279969]
本稿では,ドメイン対応ユーザシミュレータDAUSを紹介する。
タスク指向対話の実例について,DAUSを微調整する。
2つの関連するベンチマークの結果は、ユーザ目標達成の点で大幅に改善されている。
論文 参考訳(メタデータ) (2024-02-20T20:57:47Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - Integrating Human Expertise in Continuous Spaces: A Novel Interactive
Bayesian Optimization Framework with Preference Expected Improvement [0.5148939336441986]
Interactive Machine Learning (IML)は、人間の専門知識を機械学習プロセスに統合することを目指している。
ベイズ最適化(BO)に基づく新しいフレームワークを提案する。
BOは機械学習アルゴリズムと人間とのコラボレーションを可能にする。
論文 参考訳(メタデータ) (2024-01-23T11:14:59Z) - Our Model Achieves Excellent Performance on MovieLens: What Does it Mean? [43.3971105361606]
我々は、MovieLensデータセットの綿密な分析を行う。
MovieLensプラットフォームと対話する場合、異なる段階でのユーザインタラクションには大きな違いがある。
そこで本研究では,MovieLensシステムで使用されるインタラクション生成機構と,一般的な実世界のレコメンデーションシナリオとの相違について論じる。
論文 参考訳(メタデータ) (2023-07-19T13:44:32Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
インタラクティブな環境下でプロアクティブなポリシーを学習できるI-Proという新しいソリューションを提案する。
具体的には,4つの要因からなる学習目標重みを通じてトレードオフを学習する。
実験の結果,I-Proは,有効性と解釈性において,ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-04-07T14:11:31Z) - What Does The User Want? Information Gain for Hierarchical Dialogue
Policy Optimisation [3.1433893853959605]
強化学習(RL)による最適化は、非効率性と不安定性のサンプリングに影響を受けやすい。
本稿では,この問題に対処するための情報ゲインに基づく本質的な報酬の利用を提案する。
FeudalGainと呼ばれる我々のアルゴリズムは、PyDialフレームワークのほとんどの環境で最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-15T07:21:26Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
我々は,アクティブラーニングシステムとユーザを協調的に(効率的に学習)するための,新しいアクティブラーニング手法を提案する。
本手法は,特定のユーザに対して,エクササイズの適切性を予測するために,学習を迅速かつ迅速に行う必要があるため,特に,この手法のメリットを生かした教育アプリケーションで研究する。
複数の学習戦略とユーザタイプを実際のユーザからのデータで評価し,代替手法がエンドユーザに適さない多くのエクササイズをもたらす場合,共同アプローチが両方の目標を満足できることを確認した。
論文 参考訳(メタデータ) (2020-05-09T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。