Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC
- URL: http://arxiv.org/abs/2006.13044v1
- Date: Sun, 21 Jun 2020 23:07:41 GMT
- Title: Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC
- Authors: Xiang Ma, Haijian Sun, Rose Qingyang Hu
- Abstract summary: Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed.
We propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate.
Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks.
- Score: 21.267954799102874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a highly pursued machine learning technique that
can train a model centrally while keeping data distributed. Distributed
computation makes FL attractive for bandwidth limited applications especially
in wireless communications. There can be a large number of distributed edge
devices connected to a central parameter server (PS) and iteratively
download/upload data from/to the PS. Due to the limited bandwidth, only a
subset of connected devices can be scheduled in each round. There are usually
millions of parameters in the state-of-art machine learning models such as deep
learning, resulting in a high computation complexity as well as a high
communication burden on collecting/distributing data for training. To improve
communication efficiency and make the training model converge faster, we
propose a new scheduling policy and power allocation scheme using
non-orthogonal multiple access (NOMA) settings to maximize the weighted sum
data rate under practical constraints during the entire learning process. NOMA
allows multiple users to transmit on the same channel simultaneously. The user
scheduling problem is transformed into a maximum-weight independent set problem
that can be solved using graph theory. Simulation results show that the
proposed scheduling and power allocation scheme can help achieve a higher FL
testing accuracy in NOMA based wireless networks than other existing schemes.
Related papers
- Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Wirelessly Powered Federated Learning Networks: Joint Power Transfer,
Data Sensing, Model Training, and Resource Allocation [24.077525032187893]
Federated learning (FL) has found many successes in wireless networks.
implementation of FL has been hindered by the energy limitation of mobile devices (MDs) and the availability of training data at MDs.
How to integrate wireless power transfer and sustainable sustainable FL networks.
arXiv Detail & Related papers (2023-08-09T13:38:58Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning (FL) is a privacy-preserving distributed learning framework where a server aggregates models updated by multiple devices without accessing their private datasets.
In this paper, we introduce model pruning for HFL in wireless networks to reduce the neural network scale.
We show that our proposed HFL with model pruning achieves similar learning accuracy compared with the HFL without model pruning and reduces about 50 percent communication cost.
arXiv Detail & Related papers (2023-05-15T22:04:49Z) - Multi-Job Intelligent Scheduling with Cross-Device Federated Learning [65.69079337653994]
Federated Learning (FL) enables collaborative global machine learning model training without sharing sensitive raw data.
We propose a novel multi-job FL framework, which enables the training process of multiple jobs in parallel.
We propose a novel intelligent scheduling approach based on multiple scheduling methods, including an original reinforcement learning-based scheduling method and an original Bayesian optimization-based scheduling method.
arXiv Detail & Related papers (2022-11-24T06:17:40Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - User Scheduling for Federated Learning Through Over-the-Air Computation [22.853678584121862]
A new machine learning technique termed as federated learning (FL) aims to preserve data at the edge devices and to only exchange ML model parameters in the learning process.
FL not only reduces the communication needs but also helps to protect the local privacy.
AirComp is capable of computing while transmitting data by allowing multiple devices to send data simultaneously by using analog modulation.
arXiv Detail & Related papers (2021-08-05T23:58:15Z) - Joint Device Scheduling and Resource Allocation for Latency Constrained
Wireless Federated Learning [26.813145949399427]
In federated learning (FL), devices upload their local model updates via wireless channels.
We propose a joint device scheduling and resource allocation policy to maximize the model accuracy.
Experiments show that the proposed policy outperforms state-of-the-art scheduling policies.
arXiv Detail & Related papers (2020-07-14T16:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.