論文の概要: Rotation Invariant Deep CBIR
- arxiv url: http://arxiv.org/abs/2006.13046v1
- Date: Sun, 21 Jun 2020 21:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 12:05:14.477072
- Title: Rotation Invariant Deep CBIR
- Title(参考訳): 回転不変深部CBIR
- Authors: Subhadip Maji and Smarajit Bose
- Abstract要約: 本稿では,CBIR特徴抽出モデルとともに深層学習方向角検出モデルを導入することにより,回転不変CBIRシステムを構築する新しい手法を提案する。
また、この回転不変な深部CBIRは、大規模データセットから画像をリアルタイムに取得できることを強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introduction of Convolutional Neural Networks has improved results on almost
every image-based problem and Content-Based Image Retrieval is not an
exception. But the CNN features, being rotation invariant, creates problems to
build a rotation-invariant CBIR system. Though rotation-invariant features can
be hand-engineered, the retrieval accuracy is very low because by hand
engineering only low-level features can be created, unlike deep learning models
that create high-level features along with low-level features. This paper shows
a novel method to build a rotational invariant CBIR system by introducing a
deep learning orientation angle detection model along with the CBIR feature
extraction model. This paper also highlights that this rotation invariant deep
CBIR can retrieve images from a large dataset in real-time.
- Abstract(参考訳): 畳み込みニューラルネットワークの導入は、ほぼすべての画像ベース問題の結果を改善し、コンテンツベースイメージ検索は例外ではない。
しかし、回転不変であるcnnの特徴は、回転不変なcbirシステムを構築するための問題を引き起こす。
回転不変機能は手動で行うことができるが、手動工学では低レベルの機能しか生成できないため、低レベルの機能とともに高レベルの機能を生成するディープラーニングモデルとは異なり、検索精度は非常に低い。
本稿では,CBIR特徴抽出モデルとともに深層学習方向角検出モデルを導入することにより,回転不変CBIRシステムを構築する新しい手法を提案する。
また、この回転不変な深部CBIRは、大規模データセットから画像をリアルタイムで取得できることを強調した。
関連論文リスト
- PARE-Net: Position-Aware Rotation-Equivariant Networks for Robust Point Cloud Registration [8.668461141536383]
回転不変の特徴を学習することは、ポイントクラウド登録の基本的な要件である。
既存の手法では、回転に敏感なネットワークを用いて特徴を抽出し、回転拡大を用いて近似不変写像を無作為に学習する。
高速で軽量でロバストな登録のための位置認識型回転同変ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-14T10:26:38Z) - Achieving Rotation Invariance in Convolution Operations: Shifting from Data-Driven to Mechanism-Assured [18.910817148765176]
本稿では、任意の回転に自然に不変な新しい畳み込み演算を設計する。
従来の回転不変畳み込みニューラルネットワーク(RI-CNN)と比較した。
RIConvsはトレーニングデータに制限がある場合,これらのCNNバックボーンの精度を著しく向上することを示した。
論文 参考訳(メタデータ) (2024-04-17T12:21:57Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
本稿では、回転物体検出問題に対処するために、適応回転変換(ARC)モジュールを提案する。
ARCモジュールでは、コンボリューションカーネルが適応的に回転し、異なる画像に異なる向きのオブジェクト特徴を抽出する。
提案手法は,81.77%mAPのDOTAデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-14T11:53:12Z) - Category-Level 6D Object Pose Estimation with Flexible Vector-Based
Rotation Representation [51.67545893892129]
モノクロRGB-D画像からカテゴリレベルの6次元ポーズとサイズ推定のための新しい3次元グラフ畳み込みに基づくパイプラインを提案する。
まず,3次元グラフ畳み込みを用いた向き対応オートエンコーダの設計を行った。
そして, 回転情報を潜在特徴から効率的に復号化するために, フレキシブルなベクトルベースデコンポーザブルな回転表現を設計する。
論文 参考訳(メタデータ) (2022-12-09T02:13:43Z) - RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network [56.42518353373004]
回転不変座標変換(RIC-C)と呼ばれる新しい畳み込み演算を提案する。
CNNの標準畳み込み層を対応するRCC-Cに置き換えることで、RCC-CNNを導出することができる。
RIC-CNNはMNISTの回転試験データセット上で最先端の分類を実現することが観察できる。
論文 参考訳(メタデータ) (2022-11-21T19:27:02Z) - Deep Rotation Correction without Angle Prior [57.76737888499145]
我々は,高コンテンツ忠実度で傾きを自動的に補正する,回転補正という新しい実用的タスクを提案する。
このタスクは画像編集アプリケーションに簡単に統合でき、ユーザーは手動操作なしで回転した画像を修正できる。
我々はニューラルネットワークを利用して、傾斜した画像を知覚的に水平に歪めることができる光学フローを予測する。
論文 参考訳(メタデータ) (2022-07-07T02:46:27Z) - Orthonormal Convolutions for the Rotation Based Iterative
Gaussianization [64.44661342486434]
本稿では、画像ガウス化を可能にする回転型反復ガウス化RBIGの拡張について詳述する。
RBIGの回転は主成分分析や独立成分分析に基づくため、画像では小さな画像パッチや孤立画素に制限されている。
emphConvolutional RBIG:この問題を緩和する拡張として,RBIGの回転が畳み込みであることを示す。
論文 参考訳(メタデータ) (2022-06-08T12:56:34Z) - ReF -- Rotation Equivariant Features for Local Feature Matching [30.459559206664427]
本稿では,モデルアーキテクチャ自体に偏りを生じさせ,回転特異な特徴を生じさせる代替的補完的手法を提案する。
我々は, ステアブルCNNの高性能, 回転特異的カバレッジを全回転角に拡張できることを実証した。
本稿では,アンサンブル,ロバストな推定,ネットワークアーキテクチャのバリエーション,回転前処理の効果について詳細に分析する。
論文 参考訳(メタデータ) (2022-03-10T07:36:09Z) - Attentive Rotation Invariant Convolution for Point Cloud-based Large
Scale Place Recognition [11.433270318356675]
本稿では,Attentive Rotation Invariant Convolution (ARIConv)を提案する。
クラウドスキャンを回転させた場合の大規模位置認識タスクにおいて,本モデルが最先端の性能を達成できることを実験的に実証した。
論文 参考訳(メタデータ) (2021-08-29T09:10:56Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Rotation Equivariant Feature Image Pyramid Network for Object Detection
in Optical Remote Sensing Imagery [39.25541709228373]
本稿では、回転同値畳み込みに基づく画像ピラミッドネットワークである回転同変特徴像ピラミッドネットワーク(REFIPN)を提案する。
提案するピラミッドネットワークは, 新規な畳み込みフィルタを用いて, 広い範囲で特徴を抽出する。
提案モデルの検出性能は2つの一般的な航空ベンチマークで検証される。
論文 参考訳(メタデータ) (2021-06-02T01:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。