Scalable construction of hybrid quantum photonic cavities
- URL: http://arxiv.org/abs/2410.03851v1
- Date: Fri, 4 Oct 2024 18:36:39 GMT
- Title: Scalable construction of hybrid quantum photonic cavities
- Authors: Andrew S. Greenspon, Mark Dong, Ian Christen, Gerald Gilbert, Matt Eichenfield, Dirk Englund,
- Abstract summary: We introduce a concept that generates a finely tunable PhC cavity at a select wavelength between two heterogeneous optical materials.
The cavity is formed by stamping a hard-to-process material with simple waveguide geometries on top of an easy-to-process material.
We simulate our concept for the particularly challenging design problem of multiplexed quantum repeaters based on arrays of cavity-coupled diamond color centers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Nanophotonic resonators are central to numerous applications, from efficient spin-photon interfaces to laser oscillators and precision sensing. A leading approach consists of photonic crystal (PhC) cavities, which have been realized in a wide range of dielectric materials. However, translating proof-of-concept devices into a functional system entails a number of additional challenges, inspiring new approaches that combine: resonators with wavelength-scale confinement and high quality factors; scalable integration with integrated circuits and photonic circuits; electrical or mechanical cavity tuning; and, in many cases, a need for heterogeneous integration with functional materials such as III-V semiconductors or diamond color centers for spin-photon interfaces. Here we introduce a concept that generates a finely tunable PhC cavity at a select wavelength between two heterogeneous optical materials whose properties satisfy the above requirements. The cavity is formed by stamping a hard-to-process material with simple waveguide geometries on top of an easy-to-process material consisting of dielectric grating mirrors and active tuning capability. We simulate our concept for the particularly challenging design problem of multiplexed quantum repeaters based on arrays of cavity-coupled diamond color centers, achieving theoretically calculated unloaded quality factors of $10^6$, mode volumes as small as $1.2(\lambda/n_{eff})^3$, and maintaining >60 percent total on-chip collection efficiency of fluorescent photons. We further introduce a method of low-power piezoelectric tuning of these hybrid diamond cavities, simulating optical resonance shifts up to ~760 GHz and color center fluorescence tuning of 5 GHz independent of cavity tuning. These results will motivate integrated photonic cavities toward larger scale systems-compatible designs.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Efficient Photonic Integration of Diamond Color Centers and Thin-Film
Lithium Niobate [0.0]
negatively charged group-IV color centers in diamond are promising candidates for quantum memories.
Thin-film lithium niobate (TFLN) offers a number of useful photonic nonlinearities.
We present highly efficient integration of diamond nanobeams containing negatively charged silicon-vacancy (SiV) centers with TFLN waveguides.
arXiv Detail & Related papers (2023-06-27T05:04:32Z) - Heterogeneous integration of solid state quantum systems with a foundry
photonics platform [0.14680035572775535]
Diamond colour centres are promising optically-addressable solid state spins that can be matter-qubits.
We demonstrate heterogeneous integration of NV centres in nanodiamond with low-fluorescence silicon nitride photonics.
arXiv Detail & Related papers (2023-04-20T11:40:42Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Optical superradiance of a pair of color centers in an integrated
silicon-carbide-on-insulator microresonator [1.4085555227308877]
We report on the integration of near-transform-limited silicon defects into microdisk resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator platform.
We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode.
arXiv Detail & Related papers (2022-02-10T05:33:28Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Purcell enhanced and indistinguishable single-photon generation from
quantum dots coupled to on-chip integrated ring resonators [0.2642406403099596]
Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications.
We develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides.
We demonstrate an on-demand single-photon generation with strongly suppressed multi-photon emission probability as low as 1% and two-photon interference with visibility up to 95%.
arXiv Detail & Related papers (2020-07-25T12:43:53Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.