Adaptive Conformal Inference Under Distribution Shift
- URL: http://arxiv.org/abs/2106.00170v3
- Date: Thu, 28 Oct 2021 17:04:20 GMT
- Title: Adaptive Conformal Inference Under Distribution Shift
- Authors: Isaac Gibbs and Emmanuel Cand\`es
- Abstract summary: We develop methods for forming prediction sets in an online setting where the data generating distribution is allowed to vary over time in an unknown fashion.
Our framework builds on ideas from conformal inference to provide a general wrapper that can be combined with any black box method.
We test our method, adaptive conformal inference, on two real world datasets and find that its predictions are robust to visible and significant distribution shifts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop methods for forming prediction sets in an online setting where the
data generating distribution is allowed to vary over time in an unknown
fashion. Our framework builds on ideas from conformal inference to provide a
general wrapper that can be combined with any black box method that produces
point predictions of the unseen label or estimated quantiles of its
distribution. While previous conformal inference methods rely on the assumption
that the data points are exchangeable, our adaptive approach provably achieves
the desired coverage frequency over long-time intervals irrespective of the
true data generating process. We accomplish this by modelling the distribution
shift as a learning problem in a single parameter whose optimal value is
varying over time and must be continuously re-estimated. We test our method,
adaptive conformal inference, on two real world datasets and find that its
predictions are robust to visible and significant distribution shifts.
Related papers
- Multi-model Ensemble Conformal Prediction in Dynamic Environments [14.188004615463742]
We introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models.
The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage.
arXiv Detail & Related papers (2024-11-06T05:57:28Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
Conformal prediction and split conformal prediction offer a distribution-free approach to estimating prediction intervals with statistical guarantees.
Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage.
This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction.
arXiv Detail & Related papers (2023-09-15T11:10:46Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Conformal Inference for Online Prediction with Arbitrary Distribution
Shifts [1.2277343096128712]
We consider the problem of forming prediction sets in an online setting where the distribution generating the data is allowed to vary over time.
We develop a novel procedure with provably small regret over all local time intervals of a given width.
We test our techniques on two real-world datasets aimed at predicting stock market volatility and COVID-19 case counts.
arXiv Detail & Related papers (2022-08-17T16:51:12Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Domain Conditional Predictors for Domain Adaptation [3.951376400628575]
We consider a conditional modeling approach in which predictions, in addition to being dependent on the input data, use information relative to the underlying data-generating distribution.
We argue that such an approach is more generally applicable than current domain adaptation methods.
arXiv Detail & Related papers (2021-06-25T22:15:54Z) - Calibrated Adversarial Refinement for Stochastic Semantic Segmentation [5.849736173068868]
We present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood.
We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities.
We show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset.
arXiv Detail & Related papers (2020-06-23T16:39:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.