End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps
- URL: http://arxiv.org/abs/2203.16910v1
- Date: Thu, 31 Mar 2022 09:24:32 GMT
- Title: End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps
- Authors: Ke Guo, Wenxi Liu, Jia Pan
- Abstract summary: In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
- Score: 29.67295706224478
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we aim to forecast a future trajectory distribution of a
moving agent in the real world, given the social scene images and historical
trajectories. Yet, it is a challenging task because the ground-truth
distribution is unknown and unobservable, while only one of its samples can be
applied for supervising model learning, which is prone to bias. Most recent
works focus on predicting diverse trajectories in order to cover all modes of
the real distribution, but they may despise the precision and thus give too
much credit to unrealistic predictions. To address the issue, we learn the
distribution with symmetric cross-entropy using occupancy grid maps as an
explicit and scene-compliant approximation to the ground-truth distribution,
which can effectively penalize unlikely predictions. In specific, we present an
inverse reinforcement learning based multi-modal trajectory distribution
forecasting framework that learns to plan by an approximate value iteration
network in an end-to-end manner. Besides, based on the predicted distribution,
we generate a small set of representative trajectories through a differentiable
Transformer-based network, whose attention mechanism helps to model the
relations of trajectories. In experiments, our method achieves state-of-the-art
performance on the Stanford Drone Dataset and Intersection Drone Dataset.
Related papers
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
Navigating complex traffic environments has been significantly enhanced by advancements in intelligent technologies, enabling accurate environment perception and trajectory prediction for automated vehicles.
Existing research often neglects the consideration of the joint reasoning of scenario agents and lacks interpretability in trajectory prediction models.
An explainability-oriented trajectory prediction model is designed in this work, named Explainable Diffusion Conditional based Multimodal Trajectory Prediction Traj-Explainer.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle.
In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles.
Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference.
arXiv Detail & Related papers (2024-09-25T18:43:58Z) - Generating Synthetic Ground Truth Distributions for Multi-step Trajectory Prediction using Probabilistic Composite Bézier Curves [4.837320865223374]
This paper proposes a novel approach to synthetic dataset generation based on composite probabilistic B'ezier curves.
The paper showcases an exemplary trajectory prediction model evaluation using generated ground truth distribution data.
arXiv Detail & Related papers (2024-04-05T20:50:06Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Robustness via Cross-Domain Ensembles [0.5801044612920816]
We present a method for making neural network predictions robust to shifts from the training data distribution.
The proposed method is based on making predictions via a diverse set of cues and ensembling them into one strong prediction.
arXiv Detail & Related papers (2021-03-19T17:28:03Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Calibrated Adversarial Refinement for Stochastic Semantic Segmentation [5.849736173068868]
We present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood.
We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities.
We show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset.
arXiv Detail & Related papers (2020-06-23T16:39:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.