論文の概要: Automated Detection of COVID-19 from CT Scans Using Convolutional Neural
Networks
- arxiv url: http://arxiv.org/abs/2006.13212v1
- Date: Tue, 23 Jun 2020 06:50:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 22:53:08.187266
- Title: Automated Detection of COVID-19 from CT Scans Using Convolutional Neural
Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いたCTスキャンからのCOVID-19自動検出
- Authors: Rohit Lokwani, Ashrika Gaikwad, Viraj Kulkarni, Aniruddha Pant, Amit
Kharat
- Abstract要約: COVID-19はSARS-CoV 2003と同様の呼吸器障害を引き起こす感染症である。
U-Netアーキテクチャを用いて2次元セグメンテーションモデルを構築し,感染領域をマークアウトして出力する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19 is an infectious disease that causes respiratory problems similar to
those caused by SARS-CoV (2003). Currently, swab samples are being used for its
diagnosis. The most common testing method used is the RT-PCR method, which has
high specificity but variable sensitivity. AI-based detection has the
capability to overcome this drawback. In this paper, we propose a prospective
method wherein we use chest CT scans to diagnose the patients for COVID-19
pneumonia. We use a set of open-source images, available as individual CT
slices, and full CT scans from a private Indian Hospital to train our model. We
build a 2D segmentation model using the U-Net architecture, which gives the
output by marking out the region of infection. Our model achieves a sensitivity
of 96.428% (95% CI: 88%-100%) and a specificity of 88.39% (95% CI: 82%-94%).
Additionally, we derive a logic for converting our slice-level predictions to
scan-level, which helps us reduce the false positives.
- Abstract(参考訳): COVID-19はSARS-CoV(2003年)と同様の呼吸器障害を引き起こす感染症である。
現在、swabサンプルは診断に使用されている。
最も一般的な検査法はRT-PCR法であり、特異性が高いが可変感度を有する。
AIベースの検出は、この欠点を克服する能力を持っている。
そこで本研究では,胸部ctスキャンを用いて肺炎の診断を行う方法を提案する。
私たちは、個々のCTスライスとして利用可能なオープンソースイメージと、プライベートなインド病院からのフルCTスキャンを使って、モデルをトレーニングしています。
U-Netアーキテクチャを用いて2次元セグメンテーションモデルを構築し,感染領域をマークアウトして出力する。
感度は96.428% (95% CI: 88%-100%)、特異度は88.39% (95% CI: 82%-94%)である。
さらに、スライスレベルの予測をスキャンレベルに変換するロジックを導出し、偽陽性を減らすのに役立ちます。
関連論文リスト
- A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
本研究の目的は、胸部CTスキャンから新型コロナウイルスを機械学習で検出することである。
提案したモデルは0.927の総合精度と0.958の感度を得た。
論文 参考訳(メタデータ) (2022-06-15T18:35:22Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
我々は,他の一般的な肺炎患者や正常者から,CT画像を用いてCOVID-19を自動同定する新たな残留ネットワークを提案する。
この方法では、他の2つのクラスと94.7%の精度、93.73%の感度、98.28%の特異性、95.26%のF1スコア、および受信機動作特性曲線(AUC)の0.99の領域を区別することができる。
論文 参考訳(メタデータ) (2021-05-14T11:59:47Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
私たちは、Convolutional Neural Networksのアンサンブルを適応させて、スピーカーがCOVID-19に感染しているかどうかを分類します。
最終的には、74.9%のUnweighted Average Recall(UAR)、またはニューラルネットワークをアンサンブルすることで、ROC曲線(AUC)の80.7%を達成する。
論文 参考訳(メタデータ) (2020-12-29T01:14:17Z) - Automated triage of COVID-19 from various lung abnormalities using chest
CT features [2.4956060473718407]
入力胸部CTをスキャンし、新型コロナウイルスの患者をトリアージする、完全に自動化されたAIベースのシステムを提案する。
肺や感染症の統計、テクスチャ、形状、位置など、さまざまな特徴を生成して、機械学習ベースの分類器を訓練します。
2191例のCTデータセットを用いて本システムの評価を行い,90.8%の感度で85.4%の特異性,94.0%のROC-AUCで堅牢な解を示した。
論文 参考訳(メタデータ) (2020-10-24T19:44:48Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
新型コロナウイルス(COVID-19)は世界中の何十億もの生命に影響を与え、公衆医療に大きな影響を与えている。
新型コロナウイルス感染地域のための革新的な自動セグメンテーションパイプラインを提案する。
本手法は,複数の前処理手法を実行することにより,一意およびランダムな画像パッチをオンザフライで生成する訓練に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-24T17:29:26Z) - A Novel and Reliable Deep Learning Web-Based Tool to Detect COVID-19
Infection from Chest CT-Scan [0.0]
コロナウイルスは すでに多くの国で 世界中に広がり 命を落としています
この実験では、746人の参加者を含む最大規模の公共胸部CTスキャンデータベースが使用された。
Densely Connected Convolutional Network(DenseNet)とNu-SVMを併用して、新型コロナウイルスと健康管理を区別した。
論文 参考訳(メタデータ) (2020-06-24T13:47:54Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
胸部CT画像に基づくCOVID-19分類のための適応的特徴選択ガイド付き深層林(AFS-DF)を提案する。
AFS-DF on COVID-19 data with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)。
論文 参考訳(メタデータ) (2020-05-07T06:00:02Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
新型コロナウイルス感染症2019(COVID-19)は、200カ国以上でパンデミックの流行を引き起こしている。
感染を制御するためには、感染した人々を識別し、分離することが最も重要なステップである。
本稿では,新型コロナウイルスの胸部CT診断をリアルタイムかつ説明可能な,新しい関節分類システム(JCS)を開発した。
論文 参考訳(メタデータ) (2020-04-15T12:30:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。