論文の概要: Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net
- arxiv url: http://arxiv.org/abs/2007.04774v1
- Date: Wed, 24 Jun 2020 17:29:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 12:41:48.490126
- Title: Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net
- Title(参考訳): 3d u-netを用いた肺感染症の胸部ct画像自動分割
- Authors: Dominik M\"uller, I\~naki Soto Rey, Frank Kramer
- Abstract要約: 新型コロナウイルス(COVID-19)は世界中の何十億もの生命に影響を与え、公衆医療に大きな影響を与えている。
新型コロナウイルス感染地域のための革新的な自動セグメンテーションパイプラインを提案する。
本手法は,複数の前処理手法を実行することにより,一意およびランダムな画像パッチをオンザフライで生成する訓練に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coronavirus disease 2019 (COVID-19) affects billions of lives around the
world and has a significant impact on public healthcare. Due to rising
skepticism towards the sensitivity of RT-PCR as screening method, medical
imaging like computed tomography offers great potential as alternative. For
this reason, automated image segmentation is highly desired as clinical
decision support for quantitative assessment and disease monitoring. However,
publicly available COVID-19 imaging data is limited which leads to overfitting
of traditional approaches. To address this problem, we propose an innovative
automated segmentation pipeline for COVID-19 infected regions, which is able to
handle small datasets by utilization as variant databases. Our method focuses
on on-the-fly generation of unique and random image patches for training by
performing several preprocessing methods and exploiting extensive data
augmentation. For further reduction of the overfitting risk, we implemented a
standard 3D U-Net architecture instead of new or computational complex neural
network architectures. Through a 5-fold cross-validation on 20 CT scans of
COVID-19 patients, we were able to develop a highly accurate as well as robust
segmentation model for lungs and COVID-19 infected regions without overfitting
on the limited data. Our method achieved Dice similarity coefficients of 0.956
for lungs and 0.761 for infection. We demonstrated that the proposed method
outperforms related approaches, advances the state-of-the-art for COVID-19
segmentation and improves medical image analysis with limited data. The code
and model are available under the following link:
https://github.com/frankkramer-lab/covid19.MIScnn
- Abstract(参考訳): 新型コロナウイルス(COVID-19)は世界中の何十億もの生命に影響を与え、公衆医療に大きな影響を与えている。
RT-PCRのスクリーニング法としての感受性に対する懐疑論の高まりにより、CTのような医用画像は代替手段として大きな可能性を秘めている。
このため, 定量的評価と疾患モニタリングのための臨床判断支援として, 画像分割の自動化が望まれている。
しかし、公開されている新型コロナウイルスの画像データは限られており、従来のアプローチの過度な適合につながる。
この問題に対処するため,我々は,変異データベースとして利用することで,小規模データセットを処理できる新型コロナウイルス感染地域を対象とした,革新的なセグメント化パイプラインを提案する。
本手法は,複数の事前処理手法を実行し,広範囲なデータ拡張を活用することにより,一意および無作為な画像パッチをオンザフライで生成する訓練に焦点をあてる。
オーバーフィッティングリスクのさらなる低減のために、新しい複雑なニューラルネットワークアーキテクチャではなく、標準的な3d u-netアーキテクチャを実装しました。
また,20例のCTスキャンで5倍のクロスバリデーションを行い,肺や新型コロナウイルスの感染部位に対する高精度かつ堅牢なセグメンテーションモデルを構築した。
肺に対する0.956,感染に対する 0.761 のdice類似度係数を得た。
提案手法は, 関連手法より優れ, 新型コロナウイルスセグメンテーションの最先端化と, 限られたデータによる医用画像解析の改善を実証した。
https://github.com/frankkramer-lab/covid19.miscnn.com/ コードとモデルは以下のリンクで利用可能である。
関連論文リスト
- CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - COVID-19 Infection Localization and Severity Grading from Chest X-ray
Images [3.4546388019336143]
コロナウイルス感染症2019(COVID-19)は、2019年12月に出現して以来、世界中で主要な課題となっている。
我々は、11,956のCOVID-19サンプルを含む33,920のCXRイメージで、最大のベンチマークデータセットを構築しました。
このアプローチは、99%以上の感度と特異性の両方で優れたCOVID-19検出性能を達成しました。
論文 参考訳(メタデータ) (2021-03-14T18:06:06Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
新型コロナウイルスは肺炎に似た呼吸器症候群である。
科学者、研究者、医療専門家は、肺感染症の特定によって、新型コロナウイルスの迅速かつ自動化された診断に貢献している。
本稿では,様々な最先端ディープラーニング手法における非バイアスの微調整学習(トランスファーラーニング)に対するランダムなオーバーサンプリングと重み付きクラス損失関数アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-23T10:24:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
本研究の主な目的は、胸部X線検査における新型コロナウイルススクリーニングの問題に対して、正確かつ効率的な方法を提案することである。
13,569枚のX線画像のデータセットを、健康な非新型コロナウイルス患者と新型コロナウイルス患者に分けて、提案したアプローチを訓練する。
結果: 提案手法により, 全体の精度93.9%, COVID-19, 感度96.8%, 正の予測100%の高品質モデルが得られた。
論文 参考訳(メタデータ) (2020-04-12T23:26:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z) - COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from
Radiographs [1.9798034349981157]
新型コロナウイルスと他の肺炎を鑑別するための正確な畳み込みニューラルネットワークフレームワークを提案する。
本研究は,モデル性能を向上させるために,トレーニング済みのResNet-50アーキテクチャを微調整する3段階の手法を提案する。
このモデルは、新型コロナウイルスの早期スクリーニングに役立ち、医療システムの負担軽減に役立つ。
論文 参考訳(メタデータ) (2020-03-31T17:42:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。