論文の概要: Traffic congestion anomaly detection and prediction using deep learning
- arxiv url: http://arxiv.org/abs/2006.13215v1
- Date: Tue, 23 Jun 2020 08:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 23:55:46.367433
- Title: Traffic congestion anomaly detection and prediction using deep learning
- Title(参考訳): ディープラーニングを用いた交通渋滞異常検出と予測
- Authors: Adriana-Simona Mihaita, Haowen Li, Marian-Andrei Rizoiu
- Abstract要約: 混雑予測は、タイムリーなインシデント対応を確保するため、世界中の交通管理センターにとって重要な優先事項である。
生成されたトラフィックデータの増加は、トラフィックの機械学習予測器のトレーニングに使用されているが、時間と空間の両方でトラフィックフローの相互依存性のため、これは難しい課題である。
我々のディープラーニングモデルは従来の手法より一貫して優れており、将来、異なる時点におけるトラフィックフローを予測するのに必要な履歴データの最適時間地平線の比較分析を行う。
- 参考スコア(独自算出の注目度): 6.370406399003785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Congestion prediction represents a major priority for traffic management
centres around the world to ensure timely incident response handling. The
increasing amounts of generated traffic data have been used to train machine
learning predictors for traffic, however, this is a challenging task due to
inter-dependencies of traffic flow both in time and space. Recently, deep
learning techniques have shown significant prediction improvements over
traditional models, however, open questions remain around their applicability,
accuracy and parameter tuning. This paper brings two contributions in terms of:
1) applying an outlier detection an anomaly adjustment method based on incoming
and historical data streams, and 2) proposing an advanced deep learning
framework for simultaneously predicting the traffic flow, speed and occupancy
on a large number of monitoring stations along a highly circulated motorway in
Sydney, Australia, including exit and entry loop count stations, and over
varying training and prediction time horizons. The spatial and temporal
features extracted from the 36.34 million data points are used in various deep
learning architectures that exploit their spatial structure (convolutional
neuronal networks), their temporal dynamics (recurrent neuronal networks), or
both through a hybrid spatio-temporal modelling (CNN-LSTM). We show that our
deep learning models consistently outperform traditional methods, and we
conduct a comparative analysis of the optimal time horizon of historical data
required to predict traffic flow at different time points in the future.
Lastly, we prove that the anomaly adjustment method brings significant
improvements to using deep learning in both time and space.
- Abstract(参考訳): 混雑予測は、タイムリーなインシデント対応を確保するため、世界中の交通管理センターにとって重要な優先事項である。
生成したトラフィックデータの増加は、機械学習によるトラフィック予測のトレーニングに使用されているが、時間と空間の両方におけるトラフィックフローの相互依存性のため、これは難しい課題である。
近年、ディープラーニング技術は従来のモデルよりも大幅に改善されているが、適用性、精度、パラメータチューニングに関するオープンな疑問が残っている。
本論文は以下の2つの貢献を述べる。
1)入力・履歴データストリームに基づく異常調整手法を異常検出に適用し、
2) 豪シドニーの高度に循環した自動車道沿いの多数の監視所において, 交通流, 速度, 占有率を同時に予測する高度深層学習フレームワークを提案する。
36.34万のデータポイントから抽出された空間的特徴と時間的特徴は、その空間構造(畳み込み神経ネットワーク)、時間的ダイナミクス(反復神経ネットワーク)、あるいはハイブリッド時空間モデリング(CNN-LSTM)を通じて様々なディープラーニングアーキテクチャで使用される。
我々のディープラーニングモデルは従来の手法より一貫して優れており、将来、異なる時点におけるトラフィックフローを予測するのに必要な履歴データの最適時間地平線の比較分析を行う。
最後に, 時間・空間の深層学習において, 異常調整法が重要な改善をもたらすことを示す。
関連論文リスト
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
本研究では,交差点での移動予測を回転させる多グラフ畳み込みニューラルネットワーク(MGCNN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案アーキテクチャは,トラフィックデータの時間変動をモデル化する多グラフ構造と,グラフ上のトラフィックデータの空間変動をモデル化するためのスペクトル畳み込み演算を組み合わせた。
モデルが1, 2, 3, 4, 5分後に短期予測を行う能力は,4つのベースライン・オブ・ザ・アーティファクトモデルに対して評価された。
論文 参考訳(メタデータ) (2024-06-02T05:41:25Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
本稿では,時空間交通流予測問題に対するオンラインテスト時間適応手法の最初の研究を行う。
本稿では,直列分解法(ADCSD)による適応二重補正法を提案する。
提案手法では,テストフェーズ中にトレーニングされたモデル全体を微調整する代わりに,トレーニングされたモデルの後,ライトネットワークをアタッチし,データ入力が観測されるたびに,ライトネットワークのみをテストプロセスで微調整する。
論文 参考訳(メタデータ) (2024-01-08T12:04:39Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Phased Deep Spatio-temporal Learning for Highway Traffic Volume
Prediction [3.8277254030074537]
3つのフェーズで日当たりの交通量を予測するために,深部時間学習法を提案する。
決定段階では、来日ネットワーク全体の料金所でのトラフィック量が効果的に達成される。
論文 参考訳(メタデータ) (2023-08-11T14:33:20Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - Graph modelling approaches for motorway traffic flow prediction [6.370406399003785]
本稿では,シドニーの人気のある自動車道に沿って,正確な短期予測を構築するための2つの新しい時空間的アプローチを提案する。
提案手法は, 道路沿いの各目標カウントステーションに対して, 直近で最も近い交通流情報を用いて, バックトラックと近接性を示す近接手法に基づいて構築される。
その結果,10分以内の短期予測では,提案手法は最先端のディープラーニングモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-06-26T06:54:14Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度を約3~7%向上する。
実験の結果,提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度が約3~7%向上した。
論文 参考訳(メタデータ) (2020-05-08T14:23:52Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。