論文の概要: Phased Deep Spatio-temporal Learning for Highway Traffic Volume
Prediction
- arxiv url: http://arxiv.org/abs/2308.06155v1
- Date: Fri, 11 Aug 2023 14:33:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 13:44:25.821998
- Title: Phased Deep Spatio-temporal Learning for Highway Traffic Volume
Prediction
- Title(参考訳): 道路交通量予測のための位相時空間学習
- Authors: Weilong Ding, Tianpu Zhang, Zhe Wang
- Abstract要約: 3つのフェーズで日当たりの交通量を予測するために,深部時間学習法を提案する。
決定段階では、来日ネットワーク全体の料金所でのトラフィック量が効果的に達成される。
- 参考スコア(独自算出の注目度): 3.8277254030074537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inter-city highway transportation is significant for citizens' modern urban
life and generates heterogeneous sensory data with spatio-temporal
characteristics. As a routine analysis in transportation domain, daily traffic
volume estimation faces challenges for highway toll stations including lacking
of exploration of correlative spatio-temporal features from a long-term
perspective and effective means to deal with data imbalance which always
deteriorates the predictive performance. In this paper, a deep spatio-temporal
learning method is proposed to predict daily traffic volume in three phases. In
feature pre-processing phase, data is normalized elaborately according to
latent long-tail distribution. In spatio-temporal learning phase, a hybrid
model is employed combining fully convolution network (FCN) and long short-term
memory (LSTM), which considers time, space, meteorology, and calendar from
heterogeneous data. In decision phase, traffic volumes on a coming day at
network-wide toll stations would be achieved effectively, which is especially
calibrated for vital few highway stations. Using real-world data from one
Chinese provincial highway, extensive experiments show our method has distinct
improvement for predictive accuracy than various traditional models, reaching
5.269 and 0.997 in MPAE and R-squre metrics, respectively.
- Abstract(参考訳): 都市間高速交通は、市民の都市生活にとって重要なものであり、時空間特性を持つ異種感覚データを生成する。
交通分野における日常的な分析として, 交通量推定は, 長期的観点からの相関時間的特徴の探索の欠如や, 常に予測性能を劣化させるデータ不均衡に対処する効果的な手段など, 高速道路料金局の課題に直面している。
本稿では,3段階の交通量を予測するために,時空間深層学習法を提案する。
特徴前処理フェーズでは、データは潜在長テール分布に応じて精巧に正規化される。
時空間学習では、時間、空間、気象、カレンダーを異種データから考慮した完全畳み込みネットワーク(FCN)と長期記憶(LSTM)を組み合わせたハイブリッドモデルを用いる。
決定段階では、ネットワーク全体の有料駅での翌日の交通量は効果的に達成されるだろう。
中国高規格道路における実世界データを用いて,提案手法の精度は,MPAEとR-squreでそれぞれ5.269,0.997に達した。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
急速な都市化は交通渋滞を著しくエスカレートさせ、高度な渋滞予測サービスの必要性を浮き彫りにした。
本稿では,CP-MoE(Congestion Prediction Mixture-of-Experts)を提案する。
CP-MoEは、旅行時間推定システムの精度と信頼性を向上させるため、DiDiに展開されている。
論文 参考訳(メタデータ) (2024-06-14T12:57:17Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Multi-graph Spatio-temporal Graph Convolutional Network for Traffic Flow
Prediction [0.5551832942032954]
毎日の交通量予測は、ネットワーク全体の料金所で依然として課題に直面している。
本稿では,流路時間深度学習による日中交通流ハイウェイ領域の相関予測手法を提案する。
本手法は,ビジネスにおけるベースラインや実践的利益よりも予測精度が向上したことを示す。
論文 参考訳(メタデータ) (2023-08-10T14:20:43Z) - A Slow-Shifting Concerned Machine Learning Method for Short-term Traffic
Flow Forecasting [21.6456624219159]
トラフィックフロー予測における重要な課題は、毎日のサイクルと毎週のサイクルの間の時間的ピークの緩やかなシフトである。
本稿では,2つの部分を含む交通流予測のためのスローシフト型機械学習手法を提案する。
提案手法は,ルート平均二乗誤差と平均絶対パーセンテージ誤差を用いて,最先端の結果を14.55%,62.56%向上させる。
論文 参考訳(メタデータ) (2023-03-31T03:07:53Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - Traffic congestion anomaly detection and prediction using deep learning [6.370406399003785]
混雑予測は、タイムリーなインシデント対応を確保するため、世界中の交通管理センターにとって重要な優先事項である。
生成されたトラフィックデータの増加は、トラフィックの機械学習予測器のトレーニングに使用されているが、時間と空間の両方でトラフィックフローの相互依存性のため、これは難しい課題である。
我々のディープラーニングモデルは従来の手法より一貫して優れており、将来、異なる時点におけるトラフィックフローを予測するのに必要な履歴データの最適時間地平線の比較分析を行う。
論文 参考訳(メタデータ) (2020-06-23T08:49:46Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度を約3~7%向上する。
実験の結果,提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度が約3~7%向上した。
論文 参考訳(メタデータ) (2020-05-08T14:23:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。