Neural Non-Rigid Tracking
- URL: http://arxiv.org/abs/2006.13240v2
- Date: Tue, 12 Jan 2021 18:15:37 GMT
- Title: Neural Non-Rigid Tracking
- Authors: Alja\v{z} Bo\v{z}i\v{c}, Pablo Palafox, Michael Zollh\"ofer, Angela
Dai, Justus Thies, Matthias Nie{\ss}ner
- Abstract summary: We introduce a novel, end-to-end learnable, differentiable non-rigid tracker.
We employ a convolutional neural network to predict dense correspondences and their confidences.
Compared to state-of-the-art approaches, our algorithm shows improved reconstruction performance.
- Score: 26.41847163649205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel, end-to-end learnable, differentiable non-rigid tracker
that enables state-of-the-art non-rigid reconstruction by a learned robust
optimization. Given two input RGB-D frames of a non-rigidly moving object, we
employ a convolutional neural network to predict dense correspondences and
their confidences. These correspondences are used as constraints in an
as-rigid-as-possible (ARAP) optimization problem. By enabling gradient
back-propagation through the weighted non-linear least squares solver, we are
able to learn correspondences and confidences in an end-to-end manner such that
they are optimal for the task of non-rigid tracking. Under this formulation,
correspondence confidences can be learned via self-supervision, informing a
learned robust optimization, where outliers and wrong correspondences are
automatically down-weighted to enable effective tracking. Compared to
state-of-the-art approaches, our algorithm shows improved reconstruction
performance, while simultaneously achieving 85 times faster correspondence
prediction than comparable deep-learning based methods. We make our code
available.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Learning to optimize with convergence guarantees using nonlinear system theory [0.4143603294943439]
We propose an unconstrained parametrization of algorithms for smooth objective functions.
Notably, our framework is directly compatible with automatic differentiation tools.
arXiv Detail & Related papers (2024-03-14T13:40:26Z) - Gradient-free neural topology optimization [0.0]
gradient-free algorithms require many more iterations to converge when compared to gradient-based algorithms.
This has made them unviable for topology optimization due to the high computational cost per iteration and high dimensionality of these problems.
We propose a pre-trained neural reparameterization strategy that leads to at least one order of magnitude decrease in iteration count when optimizing the designs in latent space.
arXiv Detail & Related papers (2024-03-07T23:00:49Z) - Efficient Methods for Non-stationary Online Learning [67.3300478545554]
We present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $mathcalO(log T)$ to $1$.
Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial twists on non-stationary online methods.
arXiv Detail & Related papers (2023-09-16T07:30:12Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - MIO : Mutual Information Optimization using Self-Supervised Binary
Contrastive Learning [19.5917119072985]
We model contrastive learning into a binary classification problem to predict if a pair is positive or not.
The proposed method outperforms the state-of-the-art algorithms on benchmark datasets like STL-10, CIFAR-10, CIFAR-100.
arXiv Detail & Related papers (2021-11-24T17:51:29Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Overcoming Catastrophic Forgetting via Direction-Constrained
Optimization [43.53836230865248]
We study a new design of the optimization algorithm for training deep learning models with a fixed architecture of the classification network in a continual learning framework.
We present our direction-constrained optimization (DCO) method, where for each task we introduce a linear autoencoder to approximate its corresponding top forbidden principal directions.
We demonstrate that our algorithm performs favorably compared to other state-of-art regularization-based continual learning methods.
arXiv Detail & Related papers (2020-11-25T08:45:21Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
We propose a generalized Differential Dynamic Programming (DDP) neural architecture that accepts both residual connections and convolution layers.
The resulting optimal control representation admits a gameoretic perspective, in which training residual networks can be interpreted as cooperative trajectory optimization on state-augmented systems.
arXiv Detail & Related papers (2020-07-17T10:19:17Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
arXiv Detail & Related papers (2020-02-20T11:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.