Learning with Differentiable Perturbed Optimizers
- URL: http://arxiv.org/abs/2002.08676v2
- Date: Tue, 9 Jun 2020 15:09:00 GMT
- Title: Learning with Differentiable Perturbed Optimizers
- Authors: Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi,
Jean-Philippe Vert, Francis Bach
- Abstract summary: We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
- Score: 54.351317101356614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning pipelines often rely on optimization procedures to make
discrete decisions (e.g., sorting, picking closest neighbors, or shortest
paths). Although these discrete decisions are easily computed, they break the
back-propagation of computational graphs. In order to expand the scope of
learning problems that can be solved in an end-to-end fashion, we propose a
systematic method to transform optimizers into operations that are
differentiable and never locally constant. Our approach relies on
stochastically perturbed optimizers, and can be used readily together with
existing solvers. Their derivatives can be evaluated efficiently, and
smoothness tuned via the chosen noise amplitude. We also show how this
framework can be connected to a family of losses developed in structured
prediction, and give theoretical guarantees for their use in learning tasks. We
demonstrate experimentally the performance of our approach on various tasks.
Related papers
- Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous Data [23.661713049508375]
We propose an algorithm that learns over a submanifold in the setting of a client.
We show that our proposed algorithm converges sub-ly to a neighborhood of a first-order optimal solution by using a novel analysis.
arXiv Detail & Related papers (2024-06-12T17:53:28Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Contrastive Losses and Solution Caching for Predict-and-Optimize [19.31153168397003]
We use a Noise Contrastive approach to motivate a family of surrogate loss functions.
We address a major bottleneck of all predict-and-optimize approaches.
We show that even a very slow growth rate is enough to match the quality of state-of-the-art methods.
arXiv Detail & Related papers (2020-11-10T19:09:12Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.