論文の概要: LALR: Theoretical and Experimental validation of Lipschitz Adaptive
Learning Rate in Regression and Neural Networks
- arxiv url: http://arxiv.org/abs/2006.13307v1
- Date: Tue, 19 May 2020 07:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 13:20:51.878888
- Title: LALR: Theoretical and Experimental validation of Lipschitz Adaptive
Learning Rate in Regression and Neural Networks
- Title(参考訳): LALR:回帰とニューラルネットワークにおけるリプシッツ適応学習の理論的および実験的検証
- Authors: Snehanshu Saha, Tejas Prashanth, Suraj Aralihalli, Sumedh Basarkod,
T.S.B Sudarshan, Soma S Dhavala
- Abstract要約: 平均絶対誤差損失関数と量子損失関数に対する適応学習率ポリシーの理論的枠組みを提案する。
この枠組みはリプシッツ連続性の理論に基づいており、特に損失関数の学習速度とリプシッツ定数の関係を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a theoretical framework for an adaptive learning rate policy for
the Mean Absolute Error loss function and Quantile loss function and evaluate
its effectiveness for regression tasks. The framework is based on the theory of
Lipschitz continuity, specifically utilizing the relationship between learning
rate and Lipschitz constant of the loss function. Based on experimentation, we
have found that the adaptive learning rate policy enables up to 20x faster
convergence compared to a constant learning rate policy.
- Abstract(参考訳): 本稿では,平均絶対誤差損失関数と量子損失関数に対する適応学習率ポリシーの理論的枠組みを提案し,その回帰タスクの有効性を評価する。
この枠組みは、特に損失関数の学習率とリプシッツ定数の関係を利用して、リプシッツ連続性の理論に基づいている。
実験の結果,適応学習率政策は一定の学習率政策に比べて最大20倍の収束が可能であることがわかった。
関連論文リスト
- Explicit Lipschitz Value Estimation Enhances Policy Robustness Against Perturbation [2.2120851074630177]
ロボット制御タスクでは、シミュレーションにおいて強化学習(RL)によって訓練されたポリシーは、物理ハードウェアにデプロイされた場合、しばしばパフォーマンス低下を経験する。
リプシッツ正則化は、近似値関数勾配の条件付けに役立ち、訓練後のロバスト性の向上につながる。
論文 参考訳(メタデータ) (2024-04-22T05:01:29Z) - Resilient Constrained Learning [94.27081585149836]
本稿では,学習課題を同時に解決しながら,要求に適応する制約付き学習手法を提案する。
我々はこの手法を、その操作を変更することで破壊に適応する生態システムを記述する用語に因んで、レジリエントな制約付き学習と呼ぶ。
論文 参考訳(メタデータ) (2023-06-04T18:14:18Z) - Unbiased and Efficient Self-Supervised Incremental Contrastive Learning [31.763904668737304]
本稿では,新たなIncremental InfoNCE(NCE-II)損失関数からなる自己教師型Incremental Contrastive Learning(ICL)フレームワークを提案する。
ICLは最大16.7倍のトレーニングスピードアップと16.8倍の高速収束を実現している。
論文 参考訳(メタデータ) (2023-01-28T06:11:31Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
本論文は,事前収集した観測値を利用して最適な個別化決定規則を学習するオフライン政策学習について検討する。
既存の政策学習法は、一様重なりの仮定、すなわち、全ての個々の特性に対する全ての作用を探索する正当性は、境界を低くしなければならない。
我々は,点推定の代わりに低信頼度境界(LCB)を最適化する新しいアルゴリズムであるPPLを提案する。
論文 参考訳(メタデータ) (2022-12-19T22:43:08Z) - Bellman Residual Orthogonalization for Offline Reinforcement Learning [53.17258888552998]
我々はベルマン方程式を近似した新しい強化学習原理を導入し、その妥当性をテスト関数空間にのみ適用する。
我々は、この原則を利用して、政策外の評価のための信頼区間を導出するとともに、所定の政策クラス内の政策を最適化する。
論文 参考訳(メタデータ) (2022-03-24T01:04:17Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - Taylor Expansion of Discount Factors [56.46324239692532]
実効強化学習(RL)では、値関数を推定するために使われる割引係数は、評価目的を定義するために使われる値としばしば異なる。
本研究では,この割引要因の相違が学習中に与える影響について検討し,2つの異なる割引要因の値関数を補間する目的のファミリーを発見する。
論文 参考訳(メタデータ) (2021-06-11T05:02:17Z) - Robust Learning via Persistency of Excitation [4.674053902991301]
勾配勾配勾配を用いたネットワークトレーニングは力学系パラメータ推定問題と等価であることを示す。
極値理論を用いて対応するリプシッツ定数を推定する効率的な手法を提案する。
我々の手法は、様々な最先端の対数訓練モデルにおいて、対数精度を0.1%から0.3%に普遍的に向上させる。
論文 参考訳(メタデータ) (2021-06-03T18:49:05Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
不確実性定量のための回帰における予測間隔の生成について検討する。
我々は一般学習理論を用いて、リプシッツ連続性とVC-サブグラフクラスを含む最適性と実現可能性のトレードオフを特徴づける。
我々は既存のベンチマークと比べてテスト性能の点で、区間生成とキャリブレーションアルゴリズムの強みを実証的に示している。
論文 参考訳(メタデータ) (2021-02-26T17:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。