論文の概要: Classification Performance Metric for Imbalance Data Based on Recall and
Selectivity Normalized in Class Labels
- arxiv url: http://arxiv.org/abs/2006.13319v1
- Date: Tue, 23 Jun 2020 20:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 22:15:59.151096
- Title: Classification Performance Metric for Imbalance Data Based on Recall and
Selectivity Normalized in Class Labels
- Title(参考訳): クラスラベルにおけるリコールと選択性に基づく不均衡データの分類性能指標
- Authors: Robert Burduk
- Abstract要約: クラスラベルに正規化されたリコールと選択率の調和平均に基づく新しいパフォーマンス指標を提案する。
本稿では,提案手法が不均衡なデータセットに対して適切な特性を持つことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the classification of a class imbalance dataset, the performance measure
used for the model selection and comparison to competing methods is a major
issue. In order to overcome this problem several performance measures are
defined and analyzed in several perspectives regarding in particular the
imbalance ratio. There is still no clear indication which metric is universal
and can be used for any skewed data problem. In this paper we introduced a new
performance measure based on the harmonic mean of Recall and Selectivity
normalized in class labels. This paper shows that the proposed performance
measure has the right properties for the imbalanced dataset. In particular, in
the space defined by the majority class examples and imbalance ratio it is less
sensitive to changes in the majority class and more sensitive to changes in the
minority class compared with other existing single-value performance measures.
Additionally, the identity of the other performance measures has been proven
analytically.
- Abstract(参考訳): クラス不均衡データセットの分類では、モデル選択と競合する手法との比較に使用される性能指標が大きな問題である。
この問題を克服するために、いくつかのパフォーマンス対策が定義され、特に不均衡比に関していくつかの視点で分析される。
どの計量が普遍的であり、任意の歪んだデータ問題に使用できるのかは、まだ明らかでない。
本稿では,クラスラベルで正規化されたリコールと選択率の調和平均に基づく新しい性能尺度を提案する。
本稿では,提案手法が不均衡データセットに対して適切な特性を持つことを示す。
特に、多数派例と不均衡比によって定義される空間では、多数派クラスの変化に対する感度が低く、少数派クラスの変化に対する感度が他の既存の単一値のパフォーマンス指標と比較して小さい。
さらに、他の性能指標の同一性が分析的に証明されている。
関連論文リスト
- Improving the classification of extreme classes by means of loss regularisation and generalised beta distributions [8.640930010669042]
本稿では,一級・一級の分類性能を向上させるための一級正規化手法を提案する。
極端なクラスのパフォーマンスは、その感度を考慮に入れた新しいメトリクスを使って比較される。
提案手法により, 一般化されたベータ分布は, 極端なクラスにおける分類性能を向上することが示された。
論文 参考訳(メタデータ) (2024-07-17T08:57:42Z) - $F_β$-plot -- a visual tool for evaluating imbalanced data classifiers [0.0]
本稿では、一般的なパラメトリック計量である$F_beta$を分析するための簡単なアプローチを提案する。
分析された分類器のプールに対して、あるモデルがユーザの要求に応じて好まれるべき場合を示すことができる。
論文 参考訳(メタデータ) (2024-04-11T18:07:57Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - PercentMatch: Percentile-based Dynamic Thresholding for Multi-Label
Semi-Supervised Classification [64.39761523935613]
トレーニング中の各クラスに対する正と負の擬似ラベルのスコア閾値を動的に変更するためのパーセンタイルベースのしきい値調整手法を提案する。
近年のSSL方式と比較して, Pascal VOC2007 と MS-COCO のデータセットの性能は高い。
論文 参考訳(メタデータ) (2022-08-30T01:27:48Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
最適分類性能は、これまで形式化されていなかったクラス不均衡の特定の性質に依存することを示す。
具体的には、一様クラス不均衡と呼ばれる新しいクラス不均衡のサブタイプを提案する。
これらの結果は、不均衡二項分類に対する最初の有意義な有限サンプル統計理論のいくつかを提供する。
論文 参考訳(メタデータ) (2021-07-05T03:55:43Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
不均衡なデータセットのクラス分布スキューは、多数派クラスに対する予測バイアスのあるモデルにつながる可能性がある。
本稿では,不均衡なデータ分類のための簡易かつ汎用的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-12T19:47:09Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z) - On Model Evaluation under Non-constant Class Imbalance [0.0]
多くの実世界の分類問題は、関心の階級の有害さと著しくクラス不均衡である。
通常の仮定では、テストデータセットの不均衡は実世界の不均衡と等しい。
非コンスタントクラス不均衡下での評価に焦点をあてる手法を提案する。
論文 参考訳(メタデータ) (2020-01-15T21:52:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。