論文の概要: Learning Gradient Boosted Multi-label Classification Rules
- arxiv url: http://arxiv.org/abs/2006.13346v1
- Date: Tue, 23 Jun 2020 21:39:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 22:15:34.148988
- Title: Learning Gradient Boosted Multi-label Classification Rules
- Title(参考訳): 学習勾配強化マルチラベル分類規則
- Authors: Michael Rapp, Eneldo Loza Menc\'ia, Johannes F\"urnkranz, Vu-Linh
Nguyen, Eyke H\"ullermeier
- Abstract要約: 本稿では,分解不能な損失関数だけでなく,分解不能な損失関数を最小化できる多ラベル分類規則の学習アルゴリズムを提案する。
我々は,合成データに対するアプローチの能力と限界を分析し,その予測性能をマルチラベルベンチマークで評価する。
- 参考スコア(独自算出の注目度): 4.842945656927122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-label classification, where the evaluation of predictions is less
straightforward than in single-label classification, various meaningful, though
different, loss functions have been proposed. Ideally, the learning algorithm
should be customizable towards a specific choice of the performance measure.
Modern implementations of boosting, most prominently gradient boosted decision
trees, appear to be appealing from this point of view. However, they are mostly
limited to single-label classification, and hence not amenable to multi-label
losses unless these are label-wise decomposable. In this work, we develop a
generalization of the gradient boosting framework to multi-output problems and
propose an algorithm for learning multi-label classification rules that is able
to minimize decomposable as well as non-decomposable loss functions. Using the
well-known Hamming loss and subset 0/1 loss as representatives, we analyze the
abilities and limitations of our approach on synthetic data and evaluate its
predictive performance on multi-label benchmarks.
- Abstract(参考訳): 予測の評価が単段分類よりも単純ではないマルチラベル分類では、様々な意味を持つが異なる損失関数が提案されている。
理想的には、学習アルゴリズムはパフォーマンス指標の特定の選択に向けてカスタマイズ可能であるべきである。
現代のブースティングの実装は、最も顕著に勾配を増す決定木であり、この観点からは魅力的である。
しかし、それらはほとんどシングルラベルの分類に制限されており、ラベルごとに分解できない限りマルチラベルの損失には耐えられない。
本研究では,マルチアウトプット問題に対する勾配ブースティングフレームワークの一般化と,非可逆損失関数と同様に可逆性を最小化できるマルチラベル分類規則の学習アルゴリズムを提案する。
一般に知られているハミング損失とサブセット0/1損失を代表として,合成データに対するアプローチの能力と限界を分析し,マルチラベルベンチマークにおける予測性能を評価する。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Hierarchical classification at multiple operating points [1.520694326234112]
階層内の各クラスにスコアを割り当てる任意のメソッドに対して,演算特性曲線を生成する効率的なアルゴリズムを提案する。
2つの新しい損失関数を提案し、構造的ヒンジ損失のソフトな変形が平坦なベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-10-19T23:36:16Z) - PercentMatch: Percentile-based Dynamic Thresholding for Multi-Label
Semi-Supervised Classification [64.39761523935613]
トレーニング中の各クラスに対する正と負の擬似ラベルのスコア閾値を動的に変更するためのパーセンタイルベースのしきい値調整手法を提案する。
近年のSSL方式と比較して, Pascal VOC2007 と MS-COCO のデータセットの性能は高い。
論文 参考訳(メタデータ) (2022-08-30T01:27:48Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Unbiased Loss Functions for Multilabel Classification with Missing
Labels [2.1549398927094874]
欠落ラベルは、極端なマルチラベル分類(XMC)タスクにおいてユビキタスな現象である。
本稿では,異なるマルチラベルリダクションに対する特異な非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-09-23T10:39:02Z) - sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel
Classification [42.37189502220329]
マルチラベル分類評価の複雑さを考慮した損失関数 sigmoidF1 を提案する。
SigmoidF1は4つのデータセットといくつかのメトリクスで他の損失関数よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-24T08:11:33Z) - Gradient-based Label Binning in Multi-label Classification [0.0]
多ラベル分類において、ラベル間の依存関係をモデル化する能力は、非分解性評価尺度を効果的に最適化するために重要である。
最近の多くのブースティングアプローチで使われている2階微分の利用は、分解不能な損失の最小化を導くのに役立つ。
本研究では,新しい近似手法を高速化手法に統合することにより,そのような手法の計算ボトルネックに対処する。
論文 参考訳(メタデータ) (2021-06-22T11:48:48Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Classification with Rejection Based on Cost-sensitive Classification [83.50402803131412]
学習のアンサンブルによる拒絶を用いた新しい分類法を提案する。
実験により, クリーン, ノイズ, 正の未ラベル分類における提案手法の有用性が示された。
論文 参考訳(メタデータ) (2020-10-22T14:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。