論文の概要: Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning
- arxiv url: http://arxiv.org/abs/2407.18624v1
- Date: Fri, 26 Jul 2024 09:33:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 13:50:27.562850
- Title: Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning
- Title(参考訳): 半教師付きマルチラベル学習のためのデュアルデカップリング学習とメトリック適応閾値
- Authors: Jia-Hao Xiao, Ming-Kun Xie, Heng-Bo Fan, Gang Niu, Masashi Sugiyama, Sheng-Jun Huang,
- Abstract要約: 半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
- 参考スコア(独自算出の注目度): 81.83013974171364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations. Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance. To solve this problem, the mainstream method developed an effective thresholding strategy to generate accurate pseudo-labels. Unfortunately, the method neglected the quality of model predictions and its potential impact on pseudo-labeling performance. In this paper, we propose a dual-perspective method to generate high-quality pseudo-labels. To improve the quality of model predictions, we perform dual-decoupling to boost the learning of correlative and discriminative features, while refining the generation and utilization of pseudo-labels. To obtain proper class-wise thresholds, we propose the metric-adaptive thresholding strategy to estimate the thresholds, which maximize the pseudo-label performance for a given metric on labeled data. Experiments on multiple benchmark datasets show the proposed method can achieve the state-of-the-art performance and outperform the comparative methods with a significant margin.
- Abstract(参考訳): 半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
この問題を解決するために、主流の手法は、正確な擬似ラベルを生成する効果的なしきい値作成戦略を開発した。
残念なことに、この手法はモデル予測の品質と擬似ラベル性能に対する潜在的な影響を無視した。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
モデル予測の質を向上させるために,擬似ラベルの生成と利用を改良しながら,相関的特徴と識別的特徴の学習を促進するために二重分離を行う。
適切なクラスワイドしきい値を得るために、ラベル付きデータ上で与えられたメトリックの擬似ラベル性能を最大化する閾値を推定するメトリック適応しきい値決定手法を提案する。
複数のベンチマークデータセットで実験したところ、提案手法は最先端の性能を達成でき、比較手法よりも優れたマージンを持つことがわかった。
関連論文リスト
- Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification [6.920336485308536]
擬似ラベルに基づく半教師付きアプローチは、画像分類において2つの問題に悩まされる。
我々は,各クラスの閾値を動的に調整し,信頼性の高いサンプル数を増やす自己適応型閾値擬似ラベル戦略を開発した。
しきい値以下でラベル付けされていないデータを効果的に活用するために、信頼できないサンプルコントラスト損失を提案する。
論文 参考訳(メタデータ) (2024-07-04T03:04:56Z) - AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
提案するSSLアルゴリズムであるAllMatchは,擬似ラベル精度の向上とラベルなしデータの100%利用率の向上を実現する。
その結果、AllMatchは既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-06-22T06:59:52Z) - LayerMatch: Do Pseudo-labels Benefit All Layers? [77.59625180366115]
半教師付き学習はラベル付きデータの依存性を軽減するための有望なソリューションを提供する。
我々はGrad-ReLUとAvg-Clusteringという2つの層固有の擬似ラベル戦略を開発した。
提案手法は,標準的な半教師付き学習ベンチマークにおいて,例外的な性能を示す。
論文 参考訳(メタデータ) (2024-06-20T11:25:50Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - SLaM: Student-Label Mixing for Distillation with Unlabeled Examples [15.825078347452024]
学生ラベル混合(SLaM)と呼ばれる未ラベル例を用いた知識蒸留の原理的手法を提案する。
SLaMは、いくつかの標準ベンチマークで評価することで、従来のアプローチよりも一貫して改善されている。
ランダムな分類雑音下でハーフスペースを学習する際の最もよく知られたサンプル複雑性を改善するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-08T00:14:44Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。