論文の概要: ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2006.13461v3
- Date: Fri, 7 Aug 2020 01:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 12:50:14.840339
- Title: ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation
- Title(参考訳): ATSO:半監督医療画像分割のための非同期教師・学生最適化
- Authors: Xinyue Huo, Lingxi Xie, Jianzhong He, Zijie Yang and Qi Tian
- Abstract要約: 教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
- 参考スコア(独自算出の注目度): 99.90263375737362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical image analysis, semi-supervised learning is an effective method to
extract knowledge from a small amount of labeled data and a large amount of
unlabeled data. This paper focuses on a popular pipeline known as self
learning, and points out a weakness named lazy learning that refers to the
difficulty for a model to learn from the pseudo labels generated by itself. To
alleviate this issue, we propose ATSO, an asynchronous version of
teacher-student optimization. ATSO partitions the unlabeled data into two
subsets and alternately uses one subset to fine-tune the model and updates the
label on the other subset. We evaluate ATSO on two popular medical image
segmentation datasets and show its superior performance in various
semi-supervised settings. With slight modification, ATSO transfers well to
natural image segmentation for autonomous driving data.
- Abstract(参考訳): 医学画像解析において、半教師付き学習は、少量のラベル付きデータと大量のラベル付きデータから知識を抽出する効果的な方法である。
本稿では,自己学習として知られる一般的なパイプラインに注目し,モデルが生成する擬似ラベルから学ぶことの難しさを指摘する,遅延学習と呼ばれる弱点を指摘する。
この問題を軽減するために,教師学生最適化の非同期バージョンであるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、1つのサブセットを使ってモデルを微調整し、他のサブセットでラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
わずかな修正で、ATSOは自律運転データのための自然な画像セグメンテーションにうまく移行する。
関連論文リスト
- Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image
Segmentation [17.69933345468061]
医用画像セグメンテーションのための強力なディープラーニングモデルをトレーニングする上で、不足は大きな障害となっている。
textbfVersatile textbfSemi-supervised framework を導入する。
論文 参考訳(メタデータ) (2023-11-20T11:35:52Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Correlation-Aware Mutual Learning for Semi-supervised Medical Image
Segmentation [5.045813144375637]
既存の半教師付きセグメンテーション手法の多くは、ラベルのないデータから情報を取り出すことのみに焦点を当てている。
本稿では,ラベル付きデータを利用してラベル付きデータから情報を抽出する相関学習フレームワークを提案する。
提案手法は,CMA(Cross-sample Mutual Attention Module)とOCC(Omni-Correlation Consistency Module)の2つのモジュールを組み込んだ相互学習戦略に基づいている。
論文 参考訳(メタデータ) (2023-07-12T17:20:05Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
本稿では,半弱化アノテーションを用いた表現学習のための,半弱化教師付きコントラスト学習フレームワークを提案する。
SWCLの移動学習性能を7つの公立網膜眼底データセットで実証的に検証した。
論文 参考訳(メタデータ) (2021-08-04T15:50:09Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
本稿では,新しい半教師付きドメイン適応手法,すなわちDual-Teacherを提案する。
学生モデルは、2つの教師モデルによってラベル付けされていない対象データとラベル付けされた情報源データの知識を学習する。
提案手法では, ラベルなしデータとモダリティ間データとを並列に利用でき, 性能が向上することを示した。
論文 参考訳(メタデータ) (2020-07-13T10:00:44Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。