論文の概要: Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2206.00344v1
- Date: Wed, 1 Jun 2022 09:20:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 23:13:40.802979
- Title: Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis
- Title(参考訳): 医用画像解析におけるラベル付きデータの必要性軽減を目的とした自己指導型学習
- Authors: Marin Ben\v{c}evi\'c, Marija Habijan, Irena Gali\'c, Aleksandra
Pizurica
- Abstract要約: 胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
- 参考スコア(独自算出の注目度): 64.4093648042484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the largest problems in medical image processing is the lack of
annotated data. Labeling medical images often requires highly trained experts
and can be a time-consuming process. In this paper, we evaluate a method of
reducing the need for labeled data in medical image object detection by using
self-supervised neural network pretraining. We use a dataset of chest X-ray
images with bounding box labels for 13 different classes of anomalies. The
networks are pretrained on a percentage of the dataset without labels and then
fine-tuned on the rest of the dataset. We show that it is possible to achieve
similar performance to a fully supervised model in terms of mean average
precision and accuracy with only 60\% of the labeled data. We also show that it
is possible to increase the maximum performance of a fully-supervised model by
adding a self-supervised pretraining step, and this effect can be observed with
even a small amount of unlabeled data for pretraining.
- Abstract(参考訳): 医用画像処理における最大の問題は、注釈付きデータの欠如である。
医療画像のラベル付けには、しばしば高度に訓練された専門家が必要となる。
本稿では,自己教師型ニューラルネットワークプリトレーニングを用いて,医用画像オブジェクト検出におけるラベル付きデータの必要性を低減する方法を評価する。
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ネットワークはラベルのないデータセットのパーセンテージで事前トレーニングされ、残りのデータセットで微調整される。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
また, 自己教師付き事前学習ステップを付加することにより, 教師付きモデルの最大性能を向上させることが可能であり, 事前学習のためのラベルなしデータの少量でもこの効果を観測できることを示した。
関連論文リスト
- Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
医用画像の深層学習は、診断ミスのリスクを最小限に抑え、放射線医の作業量を減らし、診断を加速する可能性がある。
このようなディープラーニングモデルのトレーニングには,すべてのトレーニングサンプルに対するアノテーションを備えた,大規模かつ正確なデータセットが必要です。
この課題に対処するために、ディープラーニングモデルは、自己教師付き学習の分野からのメソッドを使用してアノテーションなしで、大規模な画像データセット上で事前トレーニングすることができる。
論文 参考訳(メタデータ) (2023-08-12T11:31:01Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
本稿では,ルールベースのドイツ語CheXpertモデルによってラベル付けされたレポートに基づいて,ディープラーニングに基づくCheXpertラベル予測モデルを提案する。
その結果,3つのタスクすべてにおいて,ルールベースモデルを大幅に上回ったアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-06-09T16:08:35Z) - An End-to-End Framework For Universal Lesion Detection With Missing
Annotations [24.902835211573628]
そこで本研究では,検出器を同時に訓練しながら,ラベルのない病変をマイニングするための新しいエンドツーエンドフレームワークを提案する。
本研究の枠組みは,高信頼度予測と,学生モデル学習のための部分的にラベル付けされた基礎的真理が組み合わさっている。
論文 参考訳(メタデータ) (2023-03-27T09:16:10Z) - Self-Supervised Pretraining for 2D Medical Image Segmentation [0.0]
自己教師付き学習は、不正なデータに対して特定のドメインのモデルを事前訓練することで、手動でアノテートされたデータの必要性を下げる手段を提供する。
自然画像と対象領域固有の画像による自己教師付き事前学習は、最も速く、最も安定した下流収束をもたらす。
低データシナリオでは、教師付きImageNet事前トレーニングが最も正確であり、最小限のエラーに近づくためには100以上の注釈付きサンプルが必要である。
論文 参考訳(メタデータ) (2022-09-01T09:25:22Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
シーングラフモデルは通常、大量のラベル付きデータを人間のアノテーションで教師付き学習する必要がある。
本研究では,人間ラベルデータを用いずにシーングラフモデルを訓練できる視覚関係学習の新しいパラダイムである視覚遠方監視を提案する。
包括的な実験結果から、我々の遠隔監視モデルは、弱い監督と半監督のベースラインよりも優れています。
論文 参考訳(メタデータ) (2021-03-29T06:35:24Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。