論文の概要: Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds
- arxiv url: http://arxiv.org/abs/2006.13501v2
- Date: Mon, 10 Aug 2020 20:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 10:01:09.161302
- Title: Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds
- Title(参考訳): 確率的非凸最適化:適応アルゴリズムと高次一般化境界
- Authors: Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, Arindam
Banerjee
- Abstract要約: 有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
- 参考スコア(独自算出の注目度): 72.63031036770425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study differentially private (DP) algorithms for stochastic non-convex
optimization. In this problem, the goal is to minimize the population loss over
a $p$-dimensional space given $n$ i.i.d. samples drawn from a distribution. We
improve upon the population gradient bound of ${\sqrt{p}}/{\sqrt{n}}$ from
prior work and obtain a sharper rate of $\sqrt[4]{p}/\sqrt{n}$. We obtain this
rate by providing the first analyses on a collection of private gradient-based
methods, including adaptive algorithms DP RMSProp and DP Adam. Our proof
technique leverages the connection between differential privacy and adaptive
data analysis to bound gradient estimation error at every iterate, which
circumvents the worse generalization bound from the standard uniform
convergence argument. Finally, we evaluate the proposed algorithms on two
popular deep learning tasks and demonstrate the empirical advantages of DP
adaptive gradient methods over standard DP SGD.
- Abstract(参考訳): 確率的非凸最適化のための差分プライベート(DP)アルゴリズムについて検討する。
この問題では、分布から引き出されたサンプルが与えられたp$-次元空間上の人口減少を最小限に抑えることが目的である。
我々は、以前の作業から${\sqrt{p}}/{\sqrt{n}}$の集団勾配を改良し、よりシャープな$\sqrt[4]{p}/\sqrt{n}$を得る。
適応アルゴリズム DP RMSProp と DP Adam を含む,プライベート勾配に基づく手法のコレクションを初めて分析することにより,この率を得る。
我々の証明手法は、差分プライバシーと適応データ解析の接続を利用して、各イテレーションにおける境界勾配推定誤差を計算し、標準の均一収束引数から有界な一般化を回避する。
最後に,一般的な2つの深層学習タスクにおける提案アルゴリズムを評価し,標準dp sgdに対するdp適応勾配法の実証的利点を示す。
関連論文リスト
- Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates [15.27596975662702]
重み付き勾配を用いたDP最適化の最適速度を達成するアルゴリズムについて検討する。
その結果,DP下での凸最適化の理論的限界が達成可能であることを示す。
論文 参考訳(メタデータ) (2024-08-19T11:07:05Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Stochastic Dimension-reduced Second-order Methods for Policy
Optimization [11.19708535159457]
各イテレーションにおいて勾配とヘシアンベクトル積のみを必要とするポリシー最適化のための新しい2次アルゴリズムを提案する。
具体的には、投影された2次元信頼領域のサブプロブレムを繰り返す次元還元二階法(DR-SOPO)を提案する。
DR-SOPOはおよそ1次定常状態に到達するために$mathcalO(epsilon-3.5)$の複雑さが得られることを示す。
さらに,拡張アルゴリズム (DVR-SOPO) を提案する。
論文 参考訳(メタデータ) (2023-01-28T12:09:58Z) - Privately Estimating a Gaussian: Efficient, Robust and Optimal [6.901744415870126]
純微分プライバシー(DP)モデルと近似微分プライバシー(DP)モデルの両方において、ガウス分布をプライベートに推定する効率的なアルゴリズムを提供する。
純粋なDP設定では、未知の$d$次元ガウス分布を任意の全変分誤差まで推定する効率的なアルゴリズムを与える。
平均推定の特別な場合、我々のアルゴリズムは$widetilde O(d1.5)$の最適なサンプル複雑性を達成し、以前の作業から$widetilde O(d1.5)$のバウンドを改善する。
論文 参考訳(メタデータ) (2022-12-15T18:27:39Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGDとDP-NSGDは、センシティブなトレーニングデータを記憶する大規模モデルのリスクを軽減する。
DP-NSGD は DP-SGD よりも比較的チューニングが比較的容易であるのに対して,これらの2つのアルゴリズムは同様の精度を実現する。
論文 参考訳(メタデータ) (2022-06-27T03:45:02Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
本研究では,分散分布からサンプリングしたストリーミングデータを用いてDPの凸最適化問題について検討し,逐次到着する。
また、プライベート情報に関連するパラメータを更新し、新しいデータ(しばしばオンラインアルゴリズム)に基づいてリリースする連続リリースモデルについても検討する。
提案アルゴリズムは,1pleq 2$のときの最適余剰リスクと,2pleqinfty$のときの非プライベートな場合の最先端の余剰リスクを線形時間で達成する。
論文 参考訳(メタデータ) (2022-06-16T12:09:47Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。