論文の概要: Randomized Block-Diagonal Preconditioning for Parallel Learning
- arxiv url: http://arxiv.org/abs/2006.13591v2
- Date: Mon, 7 Dec 2020 09:33:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 10:00:32.050233
- Title: Randomized Block-Diagonal Preconditioning for Parallel Learning
- Title(参考訳): 並列学習のためのランダム化ブロック対角前処理
- Authors: Celestine Mendler-D\"unner, Aurelien Lucchi
- Abstract要約: 本研究では,プレコンディショニング行列がブロック対角形を持つ事前条件付き勾配に基づく最適化手法について検討する。
本研究の主な貢献は,これらの手法の収束性がランダム化手法によって著しく向上できることを実証することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study preconditioned gradient-based optimization methods where the
preconditioning matrix has block-diagonal form. Such a structural constraint
comes with the advantage that the update computation is block-separable and can
be parallelized across multiple independent tasks. Our main contribution is to
demonstrate that the convergence of these methods can significantly be improved
by a randomization technique which corresponds to repartitioning coordinates
across tasks during the optimization procedure. We provide a theoretical
analysis that accurately characterizes the expected convergence gains of
repartitioning and validate our findings empirically on various traditional
machine learning tasks. From an implementation perspective, block-separable
models are well suited for parallelization and, when shared memory is
available, randomization can be implemented on top of existing methods very
efficiently to improve convergence.
- Abstract(参考訳): プレコンディショニング行列がブロック対角形を持つプレコンディショニング勾配に基づく最適化手法について検討する。
このような構造的制約は、更新計算がブロック分離可能であり、複数の独立したタスクを並列化できるという利点がある。
本研究の主な貢献は,最適化過程におけるタスク間の座標の分割に対応するランダム化手法により,これらの手法の収束性を大幅に向上できることを示すことである。
様々な機械学習タスクにおいて、再帰の期待収束率を正確に特徴付けし、経験的に検証する理論解析を提供する。
実装の観点からは、ブロック分離モデルは並列化に適しており、共有メモリが利用可能であれば、収束を改善するために既存のメソッド上にランダム化を実装できる。
関連論文リスト
- A Generalization Result for Convergence in Learning-to-Optimize [4.112909937203119]
最適化における従来の収束保証は幾何学的引数に基づいており、アルゴリズムには適用できない。
私たちは、私たちの知識のベストを証明する最初の人であり、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。私たちは、私たちの知識のベストを証明する最初の人です。
論文 参考訳(メタデータ) (2024-10-10T08:17:04Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - A unified consensus-based parallel ADMM algorithm for high-dimensional
regression with combined regularizations [3.280169909938912]
並列交互乗算器 (ADMM) は大規模分散データセットの処理に有効であることが広く認識されている。
提案アルゴリズムは,財務事例の信頼性,安定性,スケーラビリティを示す。
論文 参考訳(メタデータ) (2023-11-21T03:30:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Progressive Batching for Efficient Non-linear Least Squares [31.082253632197023]
ガウス・ニュートンの基本的な改良のほとんどは、基礎となる問題構造の空間性を保証するか、あるいは活用して計算速度を上げることである。
我々の研究は、機械学習と統計の両方からアイデアを借用し、収束を保証するとともに、必要な計算量を大幅に削減する非線形最小二乗に対するアプローチを提案する。
論文 参考訳(メタデータ) (2020-10-21T13:00:04Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - CWY Parametrization: a Solution for Parallelized Optimization of
Orthogonal and Stiefel Matrices [41.57234424773276]
本稿では,GPUやTPUなどの並列計算ユニット上での直交群に対する効率的な最適化手法を提案する。
さらに、Stiefel多様体のパラメトリゼーションのための新しいTruncated CWY(またはT-CWY)アプローチを開発する。
我々は,ニューラルマシンビデオ予測のタスクにおいて,リカレントニューラルネットワークアーキテクチャのトレーニングに本手法を適用した。
論文 参考訳(メタデータ) (2020-04-18T17:58:43Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
定常ステップサイズに対する強化学習アルゴリズムの理論解析に対する分布的アプローチを提案する。
本稿では,TD($lambda$)や$Q$-Learningのような値ベースの手法が,関数の分布空間で制約のある更新ルールを持つことを示す。
論文 参考訳(メタデータ) (2020-03-27T05:13:29Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
ニューラルネットワークの評価や自己回帰モデルからのサンプリングなどのフィードフォワード計算は、機械学習においてユビキタスである。
本稿では,非線形方程式の解法としてフィードフォワード計算の課題を定式化し,ジャコビ・ガウス・シーデル固定点法とハイブリッド法を用いて解を求める。
提案手法は, 並列化可能な繰り返し回数の削減(あるいは等値化)により, 元のフィードフォワード計算と全く同じ値が与えられることを保証し, 十分な並列化計算能力を付与する。
論文 参考訳(メタデータ) (2020-02-10T10:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。